Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence and concentration of local mountain passes for a nonlinear elliptic field equation in the semi-classical limit
  • Home
  • /
  • Existence and concentration of local mountain passes for a nonlinear elliptic field equation in the semi-classical limit
  1. Home /
  2. Archives /
  3. Vol 17, No 2 (June 2001) /
  4. Articles

Existence and concentration of local mountain passes for a nonlinear elliptic field equation in the semi-classical limit

Authors

  • Teresa D'Aprile

Keywords

Nonlinear Schrödinger equation, existence. concentration, topological charge

Abstract

In this paper we are concerned with the problem of finding solutions for the following nonlinear field equation $$ -\Delta u + V(hx)u-\Delta_{p}u+ W'(u)=0, $$ where $u:\mathbb R^{N}\rightarrow \mathbb R^{N+1}$, $N\geq3$, $p> N$ and $h> 0$. We assume that the potential $V$ is positive and $W$ is an appropriate singular function. In particular we deal with the existence of solutions obtained as critical (not minimum) points for the associated energy functional when $h$ is small enough. Such solutions will eventually exhibit some notable behaviour as $h\rightarrow 0^{+}$. The proof of our results is variational and consists in the introduction of a modified (penalized) energy functional for which mountain pass solutions are studied and soon after are proved to solve our equation for $h$ sufficiently small. This idea is in the spirit of that used in M. Del Pino and P. Felmer [< i> Local mountain passes for semilinear elliptic problems in unbounded domains< /i> , Calc. Var. Partial Differential Equations < b> 4< /b> (1996), 121–137], [< i> Semi-classical states for nonlinear Schrödinger equations< /i> , J. Funct. Anal. < b> 149< /b> (1997), 245–265] and [< i> Multi-peak bound states for nonlinear Schrödinger equations< /i> , Ann. Inst. H. Poincaré Anal. Non Linéaire < b> 15< /b> (1998), 127–149], where "local mountain passes" are found in certain nonlinear Schrödinger equations.

Downloads

  • FULL TEXT

Published

2001-06-01

How to Cite

1.
D’APRILE, Teresa. Existence and concentration of local mountain passes for a nonlinear elliptic field equation in the semi-classical limit. Topological Methods in Nonlinear Analysis. Online. 1 June 2001. Vol. 17, no. 2, pp. 239 - 275. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 17, No 2 (June 2001)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop