Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The topological full group of a Cantor minimal system is dense in the full group
  • Home
  • /
  • The topological full group of a Cantor minimal system is dense in the full group
  1. Home /
  2. Archives /
  3. Vol 16, No 2 (December 2000) /
  4. Articles

The topological full group of a Cantor minimal system is dense in the full group

Authors

  • Sergey Bezuglyi
  • Jan Kwiatkowski

Keywords

Cantor set, minimal homeomorphism, full group

Abstract

To every homeomorphism $T$ of a Cantor set $X$ one can associate the full group $[T]$ formed by all homeomorphisms $\gamma$ such that $\gamma(x)=T^{n(x)}(x)$, $ x\in X$. The topological full group $[[T]]$ consists of all homeomorphisms whose associated orbit cocycle $n(x)$ is continuous. The uniform and weak topologies, $\tau_u$ and $\tau_w$, as well as their intersection $\tau_{uw}$ are studied on $\text{\rm Homeo}(X)$. It is proved that $[[T]]$ is dense in $[T]$ with respect to $\tau_u$. A Cantor minimal system $(X,T)$ is called saturated if any two clopen sets of ``the same measure'' are $[[T]]$-equivalent. We describe the class of saturated Cantor minimal systems. In particular, $(X,T)$ is saturated if and only if the closure of $[[T]]$ in $\tau_{uw}$ is $[T]$ and if and only if every infinitesimal function is a $T$-coboundary. These results are based on a description of homeomorphisms from $[[T]]$ related to a given sequence of Kakutani-Rokhlin partitions. It is shown that the offered method works for some symbolic Cantor minimal systems. The tool of Kakutani-Rokhlin partitions is used to characterize $[[T]]$-equivalent clopen sets and the subgroup $[[T]]_x \subset [[T]]$ formed by homeomorphisms preserving the forward orbit of $x$.

Downloads

  • FULL TEXT

Published

2000-12-01

How to Cite

1.
BEZUGLYI, Sergey and KWIATKOWSKI, Jan. The topological full group of a Cantor minimal system is dense in the full group. Topological Methods in Nonlinear Analysis. Online. 1 December 2000. Vol. 16, no. 2, pp. 371 - 397. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 16, No 2 (December 2000)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop