Principles and applications of high temperature ion conducting ceramic in power generation - fuel cells and oxygen membranes

Jakub Kupecki



High temperature membranes can be used in numerous applications including ceramic filters, selective sieves, removal of impurities, oxygen and hydrogen separation, electrochemical devices such as solid oxide fuel cells and solid oxide electrolysers. The fabrication process is oriented at achieving desired properties of the final product, including proper conductivity, size and density of pores, tortuosity, mechanical stability in high operating temperatures and others. Among the mentioned applications, solid oxide fuel cells and oxygen separation membranes represent materials with mixed ionic and electronic conductivity (MIEC) which will be further discussed in the lecture. Such material are often referred as membranes designed specifically for transport of ions and electrons.


high temperature membranes, solid oxide fuel cells, oxygen transport membranes

Full Text:



. Schonbein C.F. Further experiments on the current electricity excited by chemical tendencies, independent of ordinary chemical action. Philosophical Magazine and Journal of Science, (12):311–317, 1838.

. Grove W.R. On voltaic series and the combination of gases by platinum. Philosophical Magazine, 14:127–130, 1839.

. Grove W.R. On a gaseous voltaic battery. Philosophical Magazine, XXI:417–420, 1842.

. NernstW. H. Ueber die electromotorischen Krafte, welche durch den Magnetismus in von einem Warmestrome durchflossenen Metallplatten geweckt werden. Annalen der Physik und Chemie, 267(8):760–789, 1887.

. NETL: Solid State Energy Conversion Alliance (SECA) project publication. A primer on SOFC technology, 2012.

. US Department of Energy Office of Fossil Energy National Energy Technology Laboratory. Fuel Cell Handbook 7th Edition. EG G Technical Services, Inc., 2004.

. Blum L., MeulenbergW.A., Nabielek H., Steinberger-Wilckens R.World-wide SOFC technology overview and benchmark. International Journal of Applied Ceramic Technology, 2(6):482–492, 2005.

. Larminie J. and Dicks A. Fuel cell systems explained. West Sussex, England, Wiley, 2003.

. O’Hayre R., Cha S.W., Colella W., and Prinz F. Fuel cell fundamentals. Wiley, 2005.

. Kakac S., Pramuanjaroenkij A., Zhou X.Y. A review of numerical modeling of solid oxide fuel cells. International Journal of Hydrogen Energy, 32:761–786, 2007.

. Steinberger-Wilckens R. and Mubbala R. Deliverable WP 6.4 final report: Study on theintegration of an SOFC system into the onboard electricity system of the biogas bus. Technical report, PLANET GbR Oldenburg, 2012.

. Kluczowski et al. [in] Zagadnienia modelowania, konstrukcji i badań eksploatacyjnych układu mikro-kogeneracyjnego z ogniwami SOFC w Instytucie Energetyki, Tomasz Golec [ed], in print.

. R. Kluczowski, M. Krauz, M. Kawalec, J.P. Ouweltjes Near net shape manufacturing of planar anode supported solid oxide fuel cells by using ceramic injection molding and screen printing Journal of Power Sources, 268:752-757, 2014.

. Kupecki J., Jewulski J., Milewski J., Multi-Level Mathematical Modeling of Solid Oxide Fuel Cells [in] Clean Energy for Better Environment, ISBN: 978-953-51-0822-1, pp. 53-85, Intech, Rijeka, 2012.

. Sobyanin V.A., Cavallaro S., Freni S. Dimethyl ether steam reforming to feed molten carbonate fuel cells (MCFCs). Energy Fuels, 14:1139–1142, 2000.

. Fleisch T.H., Sills R.A., Briscoe M.D. Emergence of the gas-to liquids industry: a review of global GTL developments. Journal of Natural Gas Chemistry, 11:1–14, 2002.

. Yokokawa H., Hengyong T., Iwanschitz B., Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 182:400–412, 2008.

. Kattke K.J. and Braun R.J. Implementing thermal management modeling into SOFC system level design implementing thermal management modeling into SOFC system level design. Journal of Fuel Cell Science and Technology, 8(021009):1–12, 2011.

. Muller A.C.,Weber A., Herbstritt D., Ivers-Tiffee E. Proceedings of the Eighth International Symposium on Solid Oxide Fuel Cells (SOFC-VIII).

. Ioselevich A., Kornyshev A.A., Lehnert W. Statistical geometry of reaction space in porous cermet anodes based on ion-conducting electrolytes - patterns of degradation. Solid State Ionics, 124(3–4):221–237, 1999.

. Belaissaoui B. et al., Energy efficiency of oxygen enriched air production technologies: Cryogenic vs membranes, Separation and Purification Technology, 125:142-150, 2014.

. Geffroy P.M. et al., Rational selection of MIEC materials in energy production process, Chemical Engineering Science, 87:408-433, 2013.

. Hashim S.S. et al., Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation, Renewable and Sustainable Energy Reviews, 15:1284–1293, 2011.

. Wierzbicki M., Internal report on OTM testing, Institute of Power Engineering, 2012/2013, unpublished.

. Baumann S. et al., Ultrahigh oxygen permeation flux through supported a 0.5Sr0.5Co0.8Fe0.2O3 membranes, Journal of Membrane Science, 377:198-205, 2011.

. Stadler H. et al., Oxyfuel coal combustion by efficient integration of oxygen transport membranes, International Journal of Greenhouse Gas Control, 5:7–15, 2011.

. Lobera M.P. et al., On the use of supported ceria membranes for oxyfuel process/syngas production, Journal of Membrane Science, 385-386:154–161, 2011.

. Vente J.F. et al., Performance of functional perovskite membranes for oxygen production, Journal of Membrane Science, 276:178-184, 2006.

. Dyer P.N. et al., Ion transport membrane technology for oxygen separation and syngas production, Solid State Ionics, 134:21-33, 2000.

. Gromada, M., Krzastek, K., Pieciak, L., Kluczowski, R., Krauz, M., Baszczuk, A., Trawczyński, J., Stepień, M. Perovskite membranes for oxygen separation from air and oxy-combustion processes (2009) 11th International Conference and Exhibition of the European Ceramic Society 1:226-231, 2009.

. Kupecki J., Jewulski J., Motylinski K., Parametric evaluation of a micro-CHP unit with solid oxide fuel cells integrated with oxygen transport membranes, International Journal of Hydrogen Energy; 40:11633-11640, 2015.

Partnerzy platformy czasopism