Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Positive radial solutions of a quasilinear problem in an exterior domain with vanishing boundary conditions
  • Home
  • /
  • Positive radial solutions of a quasilinear problem in an exterior domain with vanishing boundary conditions
  1. Home /
  2. Archives /
  3. Vol 57, No 2 (June 2021) /
  4. Articles

Positive radial solutions of a quasilinear problem in an exterior domain with vanishing boundary conditions

Authors

  • Juan C. Guajardo
  • Sebastián Lorca
  • Rajesh Mahadevan

DOI:

https://doi.org/10.12775/TMNA.2020.050

Keywords

Quasi-linear boundary value problem, exterior domain, positive radial solutions, Krasnosel'skii fixed point theorem

Abstract

In this work, we study the existence and nonexistence of positive radial solutions for the quasilinear equation $\mathrm{div}(A(|\nabla u|)\nabla u)+\lambda k(|x|)f(u)=0$ in the exterior of a ball with vanishing boundary conditions using an approach based on a fixed point theorem for operators on Banach Space.

References

C. Bandle, C.V. Coffman and M. Marcus, Nonlinear elliptic problems in annular domains, J. Differential Equations 69 (1987), 322–345.

C. Bandle and M.K. Kwong, Semilinear elliptic problems in annular domains, J. Appl. Math. Phys. (ZAMP) 40 (1989), 245–257.

M. Chhetri, P. Drábek and R. Shivaji, Analysis of positive solutions for classes of quasilinear singular problems on exterior domains, Adv. Nonlinear Anal. 6 (2017), 447–459.

M. Chhetri, P. Drábek and R. Shivaji, S-shaped bifurcation diagrams in exterior domains, Positivity 23 (2019), 1147–1164.

S. Coleman, V. Glazer and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations, Comm. Math. Phys. 58 (1978), 211–221.

C.V. Coffman and M. Marcus, Existenceand uniqueness results for semilinear Dirichlet problems in annuli, Arch. Rational Mech. Anal. 108 (1989), 293–307.

K. Deimling, Nonlinear Functional Analysis, Springer, 1995.

R. Dhanya, Q. Morris and R. Shivaji, Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball, J. Math. Anal. Appl. 434 (2016), 1533–1548.

J.M. do O, S. Lorca, J. Sánchez and P. Ubilla, Non-homogeneous elliptic equations in exterior domain, Proc. Roy. Soc. Edinburgh Ser. A 136 (2006), 139–147.

I.M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Tansl. Ser. 2 29 (1963), 295–381.

D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, 1988.

D.D. Hai and R. Shivaji, Positive radial solutions of a class os singular superlinear problems on the exterior of a ball with nonlinear boundary conditions, J. Math. Anal. Appl. 456 (2017), 872–881.

D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1973), 241–269.

L. Kong and J. Wang, Multiple positive solutions for the one-dimensional p-Laplacian, Nonlinear Anal. 42 (2000), 1327–1333.

M.A. Krasnosel’skiı̆, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

S.S. Lin, On the existence of positive radial solutions for semilinear elliptic equations in annular domains, J. Differential Equations 81 (1989), 221–233.

W.M. Ni and J. Serrin, Non-existence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math. 39 (1986), 379–399.

W.M. Ni and J. Serrin, Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo Suppl. 5 (1986), 171–185.

J. Sánchez, Multiple positive solutions of singular eigenvalue type problems involving the one-dimensional p-laplacian, J. Math. Anal. Appl. 292 (2004), 401–414.

R. Stańczy, Positive solutions for superlinear elliptic equations, J. Math. Anal. Appl. 283 (2003), 159–166.

H. Wang, On the existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations 109 (1994), 1–7.

J. Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc. 125 (1997), 2275–2283.

H.Wang, On the structure of positive radial solutions for quasilinear equations in annular domains, Adv. Differential Equations 8 (2003), 111–128.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-06-09

How to Cite

1.
GUAJARDO, Juan C., LORCA, Sebastián and MAHADEVAN, Rajesh. Positive radial solutions of a quasilinear problem in an exterior domain with vanishing boundary conditions. Topological Methods in Nonlinear Analysis. Online. 9 June 2021. Vol. 57, no. 2, pp. 569 - 595. [Accessed 18 November 2025]. DOI 10.12775/TMNA.2020.050.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 57, No 2 (June 2021)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop