Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On a class of polynomial differential systems of degree 4: phase portraits and limit cycles
  • Home
  • /
  • On a class of polynomial differential systems of degree 4: phase portraits and limit cycles
  1. Home /
  2. Archives /
  3. Vol 57, No 2 (June 2021) /
  4. Articles

On a class of polynomial differential systems of degree 4: phase portraits and limit cycles

Authors

  • Jaume Llibre https://orcid.org/0000-0002-9511-5999
  • Tayeb Salhi https://orcid.org/0000-0003-1220-592X

DOI:

https://doi.org/10.12775/TMNA.2020.042

Keywords

Polynomial differential systems, polynomial vector fields, phase portraits, centers, limit cycles

Abstract

In this paper we characterize the phase portraits in the Poincaré disc of the class of polynomial differential systems of the form \begin{equation*} \dot{x}=-y,\qquad \dot{y} =x+ax^{4}+bx^{2}y^{2}+cy^{4}, \end{equation*} with $a^2+b^2+c^2\neq0$, which are symmetric with respect to the $x$-axis. Such systems have a center at the origin of coordinates. Moreover, using the averaging theory of five order, we study the number of limit cycles which can bifurcate from the period annulus of this center when it is perturbed inside the class of all polynomial differential systems of degree $4$.

References

N.N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sbornik 30 (1952), 181–196; Amer. Math. Soc. Transl. 100 (1954), 1–19.

R. Benterki and J. Llibre, Centers and limit cycles of polynomial differential systems of degree 4 via averaging theory, J. Comput. Appl. Math. 313 (2017), 273–283.

C.A. Buzzi, J. Llibre and J.C. Medrado, Phase portraits of reversible linear differential systems with cubic homogeneous polynomial nonlinearities having a non-degenerate center at the origin, Qual. Theory Dyn. Syst. 7 (2009), 369–403.

F. Dumortier, J. Llibre and J.C. Artés, Qualitative Theory of Planar Differential Systems, UniversiText, Springer–Verlag, New York, 2006.

J. Giné, Conditions for the existence of a center for the Kukles homogenenous systems, Comput. Math. Appl. 43 (2002), 1261–1269.

J. Giné, M. Grau and J. Llibre, Averaging theory at any order for computing periodic orbits, Comput. Phys. D. 250 (2013), 58–65.

J. Giné, J. Llibre and C. Valls, Centers for the Kukles homogeneous systems with odd degree, Bull. London Math. Soc. 47 (2015), 315–324.

J. Giné, J. Llibre and C. Valls, Centers for the Kukles homogeneous systems with even degree, J. Appl. Anal. an Comp. 7 (2017), 1534–1548.

J. Itikawa and J. Llibre, Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, J. Comput. Appl. Math. 277 (2015), 171–191.

W. Kapteyn, On the midpoints of integral curves of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland (1911), 1446–1457. (in Dutch)

W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk. 20 (1912), 1354–1365; 21, 27–33. (in Dutch)

J. Llibre, B.D. Lopes and J.R. Moraes, Limit cycles of cubic polynomial differential systems with rational first integrals of degree 2, Appl. Math. and Comput. 250 (2015), 887–907.

J. Llibre, D. D. Novaes and M. A. Teixeira, Higher order averaging theory for finding periodic solution via Brouwer degree, Nonlinearity 27 (2014), 563–583.

K.E. Malkin, Criteria for the center for a certain differential equation, Volz. Mat. Sb. Vyp. 2 (1964), 87—91. (in Russian)

L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math Soc. 76 (1954), 127–148.

D. A. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc. 48 (1975), 73–81.

M.M. Peixoto, Dynamical System, Proccedings of a Symposium held at the University of Bahia, 1973, Acad. Press, New York, 1973, pp. 389–420.

N.I. Vulpe and K.S. Sibirskiı̆, Centro-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, Dokl. Akad. Nauk SSSR 301 (1988), 1297–1301 (in Russian); English transl.: Soviet Math. Dokl. 38 (1989), 198–201.

D. Schlomiuk, Algebraic particular integrals, integrability and the problem of the center, Trans. Amer. Math. Soc. 338 (1993), 799–841.

E.P. Volokitin and V.V. Ivanov, Isochronicity and Commutation of polynomial vector fields, Sib. Math. J. 40 (1999), 22–37.

N.I. Vulpe, Affine-invariant conditions for the topological discrimination of quadratic systems with a center, Differential Equations 19 (1983), 273–280.

H. Żołądek, Quadratic systems with center and their perturbations, J. Differential Equations 109 (1994), 223–273.

H. Żołądek, The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal. 4 (1994), 79–136.

H. Żołądek, Remarks on: “The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal. 4 (1994), 79–136”, Topol. Methods Nonlinear Anal. 8 (1996), 335–342.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-06-07

How to Cite

1.
LLIBRE, Jaume and SALHI, Tayeb. On a class of polynomial differential systems of degree 4: phase portraits and limit cycles. Topological Methods in Nonlinear Analysis. Online. 7 June 2021. Vol. 57, no. 2, pp. 441 - 463. [Accessed 15 November 2025]. DOI 10.12775/TMNA.2020.042.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 57, No 2 (June 2021)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop