Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Quasilinear Schrödinger equations with singular and vanishing potentials involving nonlinearities with critical exponential growth
  • Home
  • /
  • Quasilinear Schrödinger equations with singular and vanishing potentials involving nonlinearities with critical exponential growth
  1. Home /
  2. Archives /
  3. Vol 57, No 1 (March 2021) /
  4. Articles

Quasilinear Schrödinger equations with singular and vanishing potentials involving nonlinearities with critical exponential growth

Authors

  • Yane Lísley Araújo https://orcid.org/0000-0003-1497-9777
  • Gilson Carvalho https://orcid.org/0000-0002-6864-3083
  • Rodrigo Clemente https://orcid.org/0000-0001-9941-8199

Keywords

Variational methods, critical exponential growth, Schrödinger equation, unbounded or decaying potentials

Abstract

In this paper, we study the following class of Schrödinger equations: \[ -\Delta_{N}u+V(|x|)|u|^{N-2}u=Q(|x|)h(u) \quad \text{in } \mathbb{R}^N, \] where $N\geq 2$, $V,Q\colon \mathbb{R}^{N}\rightarrow \mathbb{R}$ are potentials that can be unbounded, decaying or vanishing at infinity and the nonlinearity $h\colon \mathbb{R}\rightarrow \mathbb{R}$ has a critical exponential growth concerning the Trudinger-Moser inequality. By using a variational approach, a version of the Trudinger-Moser inequality and a symmetric criticality type result, we obtain the existence of nonnegative weak and ground state solutions for this class of problems and under suitable assumptions, we obtain a nonexistence result.

References

Adimurthi and K. Sandeep, A singular Moser–Trudinger embedding and its application, NoDEA Nonlinear Differential Equations Appl. 13 (2005), 585–603.

F. Albuquerque, C. Alves and E. Medeiros, Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth in R2 , J. Math. Anal. Appl. 409 (2014), 1021–1031.

M. Badiale, S. Greco and S. Rolando, Radial solutions of a biharmonic equation with vanishing or singular radial potentials, Nonlinear Anal. 185 (2019), 97–122.

M. Badiale, M. Guida and S. Rolando, Compactness and existence results in weighted Sobolev spaces of radial functions. Part I: compactness, Calc. Var. Partial Differential Equations 54 (2015), 1061–1090.

M. Badiale, M. Guida and S. Rolando, Compactness and existence results in weighted Sobolev spaces of radial functions. Part II: existence, NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 6, Art. 67, 34 pp.

S. Bae and J. Byeon, Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity, Commun. Pure Appl. Anal. 12 (2013), 831–850.

J. Bellazzini, M. Ghimenti, C. Mercuri, V. Moroz and J. Van Schaftingen, Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces, Trans. Amer. Math. Soc. 370 (2018), 8285–8310.

D. Bonheure and C. Mercuri, Embedding theorems and existence results for nonlinear Schrödinger–Poisson systems with unbounded and vanishing potentials, J. Differential Equations 251 (2011), 1056–1085.

D. Bonheure and J. Van Schaftingen, Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinity, Ann. Mat. Pura Appl. 189 (2010), 273–301.

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.

J.M. do Ó, E. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl. 345 (2008), 286–304.

J.M. do Ó, F. Sani and J. Zhang, Stationary nonlinear Schrödinger equations in R2 with potentials vanishing at infinity, Ann. Mat. Pura Appl. 196 (2017), 363–393.

D.G. de Figueiredo, O.H. Miyagaki and B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), 139–153.

D.C. de M. Filho, M.A.S. Souto and J.M. do Ó, A Compactness embedding lemma, a principle of symmetric criticality and applictions to elliptic problems, Proyecciones 19 (2000), 1–17.

M. de Souza, J.M. do Ó and T. Silva, Quasilinear nonhomogeneous Schrödinger equation with critical exponential growth in Rn , Topol. Methods Nonlinear Anal. 45 (2015), 615–639.

M. del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), 121–137.

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), 397–408.

P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982), 315–334.

L.A. Maia and M. Soares, Spectral theory approach for a class of radial indefinite variational problems, J. Differential Equations 266 (2019), 6905–6923.

C. Mercuri, V. Moroz and J. Van Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency, Calc. Var. Partial Differential Equations 55 (2016), Art. 146, 58 pp.

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1005–1092.

R. Palais, The principle of symmetric criticality, Comm. Math. Phys 69 (1979), 19–30.

S. Pohožaev, On the eigenfunctions of the equation ∆u + λf (u) = 0, Dokl. Akad. Nauk SSSR 165 (1965), 36–39.

P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270–291.

U.B. Severo and G.M. de Carvalho, Quasilinear Schrödinger equations with unbounded or decaying potentials, Math. Nachr. 291 (2018), 492–517.

U.B. Severo and G.M. de Carvalho, Quasilinear Schrödinger equations with a positive parameter and involving unbounded or decaying potentials, Appl. Anal. (2019), 1–24.

W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149–162

J. Su, Z.-Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differential Equations 238 (2005), 201–219.

J. Su, Z-Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math. 9 (2007), 571–583.

N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys. 153 (1993), 229–244.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-02-08

How to Cite

1.
ARAÚJO, Yane Lísley, CARVALHO, Gilson and CLEMENTE, Rodrigo. Quasilinear Schrödinger equations with singular and vanishing potentials involving nonlinearities with critical exponential growth. Topological Methods in Nonlinear Analysis. Online. 8 February 2021. Vol. 57, no. 1, pp. 317 - 342. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 57, No 1 (March 2021)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop