Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple periodic solutions for one-sided sublinear systems: A refinement of the Poincaré-Birkhoff approach
  • Home
  • /
  • Multiple periodic solutions for one-sided sublinear systems: A refinement of the Poincaré-Birkhoff approach
  1. Home /
  2. Archives /
  3. Vol 55, No 2 (June 2020) /
  4. Articles

Multiple periodic solutions for one-sided sublinear systems: A refinement of the Poincaré-Birkhoff approach

Authors

  • Tobia Dondè https://orcid.org/0000-0003-0077-0104
  • Fabio Zanolin https://orcid.org/0000-0001-9105-3084

Keywords

Poincaré-Birkhoff theorem, bend-twist maps, topological horseshoes, periodic solutions, complex oscillations

Abstract

In this paper we prove the existence of multiple periodic (harmonic and subharmonic) solutions for a class of planar Hamiltonian systems which includes the case of the second order scalar ODE $x'' + a(t)g(x) = 0$ with $g$ satisfying a one-sided condition of sublinear type. We consider the classical approach based on the Poincaré-Birkhoff fixed point theorem as well as some refinements on the side of the theory of topological horseshoes. A Duffing-type equation and an exponential nonlinearity case are studied as applications.

References

A. Boscaggin, Subharmonic solutions of planar Hamiltonian systems: a rotation number approach, Adv. Nonlinear Stud. 11 (2011), no. 1, 77–103.

A. Boscaggin and M. Garrione, Sign-changing subharmonic solutions to unforced equations with singular φ-Laplacian, Differential and Difference Equations with Applications, Springer Proc. Math. Stat., vol. 47, Springer, New York, 2013, pp. 321–329.

T. Burton and R. Grimmer, On continuability of solutions of second order differential equations, Proc. Amer. Math. Soc. 29 (1971), 277–283.

C.V. Coffman and D.F. Ullrich, On the continuation of solutions of a certain nonlinear differential equation, Monatsh. Math. 71 (1967), 385–392.

T.R. Ding and F. Zanolin, Periodic solutions of Duffing’s equations with superquadratic potential, J. Differential Equations 97 (1992), no. 2, 328–378.

A. Fonda and A.J. Ureña, A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), no. 3, 679–698.

V.K. Le and K. Schmitt, Minimization problems for noncoercive functionals subject to constraints, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4485–4513.

A. Margheri, C. Rebelo and F. Zanolin, Maslov index, Poincaré–Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, J. Differential Equations 183 (2002), no. 2, 342–367.

D. Papini and F. Zanolin, On the periodic boundary value problem and chaotic-like dynamics for nonlinear Hill’s equations, Adv. Nonlinear Stud. 4 (2004), no. 1, 71–91.

C. Rebelo, A note on the Poincaré–Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal. 29 (1997), no. 3, 291–311.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2020-05-31

How to Cite

1.
DONDÈ, Tobia and ZANOLIN, Fabio. Multiple periodic solutions for one-sided sublinear systems: A refinement of the Poincaré-Birkhoff approach. Topological Methods in Nonlinear Analysis. Online. 31 May 2020. Vol. 55, no. 2, pp. 565 - 581. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 55, No 2 (June 2020)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop