Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities
  • Home
  • /
  • Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities
  1. Home /
  2. Archives /
  3. Vol 54, No 2B (December 2019) /
  4. Articles

Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities

Authors

  • Andrei Perjan
  • Galina Rusu https://orcid.org/0000-0002-0246-4947

Keywords

Singular perturbation, abstract second order Cauchy problem, boundary layer function, a priori estimate

Abstract

In a real Hilbert space $H$ we consider the following perturbed Cauchy problem $$ \begin{cases} \varepsilonu''_{\varepsilon\delta}(t)+ \deltau'_{\varepsilon\delta}(t)+Au_{\varepsilon\delta}(t)+B(u_{\varepsilon\delta}(t))= f(t),\quad t\in(0,T),\\ u_{\varepsilon\delta}(0)=u_0,\quad u'_{\varepsilon\delta}(0)=u_1, \end{cases} \leqno(\rom{P}_{\varepsilon\delta}) $$% where $u_0, u_1\in H$, $f\colon [0,T]\mapsto H$ and $\varepsilon,$ $\delta$ are two small parameters, $A$ is a linear self-adjoint operator, $B$ is a locally Lipschitz and monotone operator. We study the behavior of solutions $u_{\varepsilon\delta}$ to the problem (P$_{\varepsilon\delta}$) in two different cases: \begin{enumerate} \item[(i)] when $\varepsilon\to 0$ and $\delta \geq \delta_0> 0 ;$ \item[(ii)] when $\varepsilon\to 0$ and $\delta \to 0.$ \end{enumerate} We obtain some {\it a priori} estimates of solutions to the perturbed problem, which are uniform with respect to parameters, and a relationship between solutions to both problems. We establish that the solution to the unperturbed problem has a singular behavior, relative to the parameters, in the neighborhood of $t=0.$ We show the boundary layer and boundary layer function in both cases.

References

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, 2010.

M. Cakir, Uniform Second-Order Difference Method for a Singularly Perturbed ThreePoint Boundary Value Problem, Adv. Difference Equ. (2010), DOI:10.1155/2010/102484.

H.O. Fattorini, The hyperbolic singular perturbation problem: an operator approach, J. Differential Equations 70 (1987), no. 1, 1–41.

M. Ghisi and M. Gobbino, Global-in-time uniform convergence for linear M.hyperbolicparabolic singular perturbations, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 1161–1170.

M. Gobbino, Singular perturbation hyperbolic-parabolic for degenerate nonlinear equations of Kirchhoff type, Nonlinear Anal. 44 (2001), no. 3, 361–374.

R. E. O’Malley Jr, Two parameter singular perturbation problems for second order equations, J. Math. Mech. 16 (1967), 1143–1164.

Gh. Moroşanu, Nonlinear Evolution Equations and Applications, Ed. Acad. Române, Bucureşti, 1988.

B. Najman, Convergence estimate for second order Cauchy problems with a small parameter, Czechoslovak Math. J. 48 (1998), no. 123, 737–745.

A. Perjan, Linear singular perturbations of hyperbolic-parabolic type, Bul. Acad. Ştiinţ. Repub. Mold. Mat. 2 (2003), no. 42, 95–112.

A. Perjan and G. Rusu, Convergence estimates for abstract second-order singularly perturbed Cauchy problems with Lipschitz nonlinearities, Asymptot. Anal. 74 (2011), no. 3–4, 135–165.

A. Perjan and G. Rusu, Convergence estimates for abstract second order singularly perturbed Cauchy problems with monotone nonlinearities, Ann. Acad. Rom. Sci. Ser. Math. Appl. 4 (2012), no. 2, 128–182.

A. Perjan and G. Rusu, Convergence estimates for abstract second-order singularly perturbed Cauchy problems with Lipschitz nonlinearities, Asymptot. Anal. 97 (2016), no. 3–4, 337–349.

A. Perjan and G. Rusu, Singularly perturbed problems for abstract differential equations of second order in Hilbert spaces, New Trends in Differential Equations, Control Theory and Optimization, (V. Barbu, C. Lefte and I.I. Vrabie, eds.), Word Scientific, 2016, 277–293.

E. O’Rodin, L.M. Pickett and G.I. Shishkin, Singularly perturbed problems modeling reaction-convection-diffusion processes, Comp. Methods Appl. Math. 3 (2003), no. 3, 424–442.

M.M. Vainberg, The variational method and the method of monotone operators, Nauka, Moscow, 1972. (Russian)

W.K. Zahra and A.M. El Mhlawy, Numerical solution of two-parameter singularly perturbed boundary value problems via exponential spline, Journal of King Saud University Science 25 (2013), 201–208.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-11-14

How to Cite

1.
PERJAN, Andrei and RUSU, Galina. Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities. Topological Methods in Nonlinear Analysis. Online. 14 November 2019. Vol. 54, no. 2B, pp. 1093 - 1110. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 54, No 2B (December 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop