Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Global bifurcation in nonlinear Dirac problems with spectral parameter in the boundary condition
  • Home
  • /
  • Global bifurcation in nonlinear Dirac problems with spectral parameter in the boundary condition
  1. Home /
  2. Archives /
  3. Vol 54, No 2 (December 2019) /
  4. Articles

Global bifurcation in nonlinear Dirac problems with spectral parameter in the boundary condition

Authors

  • Ziyatkhan S. Aliyev
  • Parvana R. Manafova

Keywords

Nonlinear Dirac problem, spectral parameter, bifurcation point, eigenvector-function, global continua

Abstract

In this paper we consider nonlinear eigenvalue problems for a one-dimensional Dirac equation with spectral parameter in the boundary condition. We investigate local and global bifurcations of nontrivial solutions to these problems. The existence of unbounded continua of nontrivial solutions bifurcating from points and intervals of the line of trivial solutions is shown.

References

Z.S. Aliyev, Some global results for nonlinear fourth order eigenvalue problems, Cent. Eur. J. Math. 12 (2014), no. 12, 1811–1828.

Z.S. Aliyev, Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order, Sb. Math. 207 (2016), no. 12, 1625–1649.

Z.S. Aliyev and G.M. Mamedova, Some global results for nonlinear Sturm–Liouville problems with spectral parameter in the boundary condition, Ann. Polon. Math. 115 (2015), no. 1, 75–87.

Z.S. Aliyev and P.R. Manafova, Oscillation theorems for the Dirac operator with spectral parameter in the boundary condition, Electron. J. Qual. Theory Differ. Equ. 115 (2016), 1–10.

Z.S. Aliyev and P.R. Manafova, Oscillation properties for the Dirac equation with spectral parameter in the boundary condition, Bull. Malays. Math. Sci. Soc., DOI: 10.1007/s40840-019-00749-1.

Z.S. Aliyev and H.Sh. Rzayeva, Oscillation properties for the equation of the relativistic quantum theory, Appl. Math. Comput. 271 (2015), 308–316.

Z.S. Aliyev and H.Sh. Rzayeva, On the oscillation of eigenvector functions of the onedimensional Dirac operator, Doklady Math. 94) (2016), no. 1, 401–405.

Z.S. Aliyev and H.Sh. Rzayeva, Global bifurcation for nonlinear Dirac problems, Electron. J. Qual. Theory Differ. Equ. 46 (2016), 1–14.

F.V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York-London, 1964.

H. Berestycki, On some nonlinear Sturm–Liouville problems, J. Differential Equations 26 (1977), 375–390.

P.A. Binding, P.J. Browne and B.A. Watson, Spectral problem for nonlinear Sturm–Liouville equations with eigenparameter dependent boundary conditions, Canad. J. Math. 52 (2000), no. 2, 248–264.

R. Chiappinelli, On eigenvalues and bifurcation for nonlinear Sturm–Liouville operators, Boll. Unione Mat. Ital. A4 (1985), 77–83.

G. Dai, Global bifurcation from intervals for Sturm–Liouville problems which are not linearizable, Electron. J. Qual. Theory Differ. Equ. 65 (2013), 1–7.

E.N. Dancer, On the structure of solutions of nonlinear eigenvalue problems, Indiana Univ. Math. J. 23 (1974), 1069–1076.

N.B. Kerimov, A boundary value problem for the Dirac system with a spectral parameter in the boundary conditions, Differ. Equ. 38 (2002), no. 2, 164–174.

M.A. Krasnosel’skiı̆, Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1965.

A.C. Lazer and P.J. McKenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl. 181 (1994), no. 3, 648–655.

B.M. Levitan and I.S. Sargsjan, Introduction to Spectral Theory; Selfadjoint Ordinary Differential Operators, Transl. Math. Monogr., vol. 39, Amer. Math. Soc., Providence, R.I., 1975.

R. Ma and B. Thompson, Nodal solutions for a nonlinear fourth-order eigenvalue problem, Acta Math. Sinica (Engl. Ser.) 24 (2008), no. 1, 27–34.

J. Przybycin, Some applications of bifurcation theory to ordinary differential equations of the fourth order, Ann. Polon. Math. 53 (1991), no. 2, 153–160.

P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513.

B.P. Rynne, Bifurcation from zero or infinity in Sturm–Liouville problems which are not linearizable, J. Math. Anal. Appl. 228 (1998), 141–156.

K. Schmitt and H.L. Smith, On eigenvalue problems for nondifferentiable mappings, J. Differential Equations 33 (1979), no. 3, 294–319.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-12-01

How to Cite

1.
ALIYEV, Ziyatkhan S. & MANAFOVA, Parvana R. Global bifurcation in nonlinear Dirac problems with spectral parameter in the boundary condition. Topological Methods in Nonlinear Analysis [online]. 1 December 2019, T. 54, nr 2, s. 817–831. [accessed 29.3.2023].
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 54, No 2 (December 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop