Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topological characteristics of solution sets for fractional evolution equations and applications to control systems
  • Home
  • /
  • Topological characteristics of solution sets for fractional evolution equations and applications to control systems
  1. Home /
  2. Archives /
  3. Vol 54, No 1 (September 2019) /
  4. Articles

Topological characteristics of solution sets for fractional evolution equations and applications to control systems

Authors

  • Shouguo Zhu
  • Zhenbin Fan
  • Gang Li

Keywords

Fractional diffusion control system, approximate controllability, resolvent, $R_{\delta}$-set

Abstract

This paper explores an abstract Riemann-Liouville fractional evolution model with a weighted delay initial condition. We develop the resolvent technique, a generalization of semigroup method, to formulate an appropriate notion of mild solutions to this abstract system and present the topological characteristics of the corresponding solution set in a weighted space. Furthermore, in view of the topological characteristics, we analyze the approximate controllability of the abstract system without Lipschitz assumption. We end up addressing an infinite dimensional fractional delay diffusion control system and a finite dimensional fractional ordinary differential control system by utilizing our theoretical findings.

References

R.P. Agarwal, M. Belmekki and M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional derivative, Adv. Differential Equations (2009), DOI:10.1155/2009/981728.

J. Andres and M. Pavlačková, Topological structure of solution sets to asymptotic boundary value problems, J. Differential Equations 248 (2010), 127–150.

R. Bader and W. Kryszewski, On the solution sets of differential inclusions and the periodic problem in Banach spaces, Nonlinear Anal. 54 (2003), 707–754.

K. Borsuk, Theory of Retracts, Monogr. Mat., vol. 44, PWN, Warsaw, 1967.

F.E. Browder and C.P. Gupta, Topological degree and nonlinear mappings of analytic type in Banach spaces, J. Math. Anal. Appl. 26 (1969), 390–402.

D.H. Chen, R.N. Wang and Y. Zhou, Nonlinear evolution inclusions: topological characterizations of solution sets and applications, J. Funct. Anal. 265 (2013), 2039–2073.

S. Djebali, L. Górniewicz and A. Ouahab, Solutions Sets for Differential Equations and Inclusions, De Gruyter Ser. Nonlinear Anal. Appl., vol. 18, Walter de Gruyter, Berlin, 2013.

M.L. Du and Z.H. Wang, Initialized fractional differential equations with Riemann–Liouville fractional-order derivative, Eur. Phys. J. Special Topics 193 (2011), 49–60.

M.M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals 14 (2002), 433–440.

Z. Fan, Existence and regularity of solutions for evolution equations with Riemann–Liouville fractional derivatives, Indag. Math. 25 (2014), 516–524.

Z. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput. 232 (2014), 60–67.

L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, 2nd edition, Springer, Dordrecht, 2006.

L. Górniewicz and M. Lassonde, Approximation and fixed points for compositions of Rδ -maps, Topology Appl. 55 (1994), 239–250.

R. Hilfer, Fractional diffusion based on Riemann–Liouville fractional derivatives, J. Phys. Chem. B 104 (2000), 3914–3917.

L.H. Hoa, N.N. Trong and L.X. Truong, Topological structure of solution set for a class of fractional neutral evolution equations on the half-line, Topol. Methods Nonlinear Anal. 48 (2016), no. 1, 235–255.

S. Hu and N.S. Papageorgious, Handbook of Multivalued Analysis (Theory), Kluwer Academic Publishers, Dordrecht Boston, London, 1997.

D.M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math. 64 (1969), 91–97.

E. Iturriaga and H. Leiva, A necessary and sufficient condition for the controllability of linear systems in Hilbert spaces and applications, IMA J. Math. Control Inform. 25 (2009), no. 3, 269–280.

M. Kamenskiı̆, V. Obukhovskiı̆ and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl., vol. 7, Walter de Gruyter, Berlin, New York, 2001.

T.D. Ke, V. Obukhovskiı̆, N.C. Wong and J.C. Yao, Approximate controllability for systems governed by nonlinear Volterra type equations, Differ. Equ. Dyn. Syst. 20 (2012), no. 1, 35–52.

S. Kumar and N. Sukavanam, Approximate controllability of fractional order semilinear systems with bounded delay, J. Differential Equations 252 (2012), 6163–6174.

K. Li and J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett. 25 (2012), 808–812.

K. Li, J. Peng and J. Jia, Cauchy problems for fractional differential equations with Riemann–Liouville fractional derivatives, J. Funct. Anal. 263 (2012), 476–510.

Z. Liu and X. Li, Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives, SIAM J. Control Optim. 53 (2015), 1920–1933.

N.I. Mahmudov and N. Semi, Approximate controllability of semilinear control systems in Hilbert spaces, TWMS J. App. Eng. Math. 2 (2012), no. 1, 67–74.

D. Matignon and B. d’Andréa-Novel, Some results on controllability and observability of finite-dimensional fractional differential systems, in: Proceedings of the Computational Engineering in Systems and Application Multiconference, vol. 2, Lille, France, July 1996, IMACS, IEEE-SMC, pp. 952–956.

K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim. 25 (1987), 715–722.

Z. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer–Verlag, New York, 1983.

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993.

J. Sabatier, C. Farges and J.C. Trigeassou, Fractional systems state space description: some wrong ideas and proposed solutions, J. Vib. Control 20 (2014), no. 7, 1076–1084.

T.I. Seidman, Invariance of the reachable set under nonlinear perturbations, SIAM J. Control Optim. 25 (1987), 1173–1191.

R.N. Wang, D.H. Chen and T.J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations 252 (2012), 202–235.

R.N. Wang, Q.M. Xiang and Y. Zhou, Fractional delay control problems: topological structure of solution sets and its applications, Optimization 63 (2014), 1249–1266.

J.R. Wang and Y. Zhou, Existence of mild solutions for fractional delay evolution systems, Appl. Math. Comput. 218 (2011), 357–367.

J.R. Wang, Y. Zhou and W. Wei, Impulsive problems for fractional evolution equations and optimal controls in infinite dimensional spaces, Topol. Methods Nonlinear Anal. 38 (2011), 17–43.

H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl. 328 (2007), no. 2, 1075–1081.

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl. 59 (2010), 1063–1077.

S. Zhu, Z. Fan and G. Li, Optimal controls for Riemann–Liouville fractional evolution systems without Lipschitz assumption, J. Optim. Theory Appl. 174 (2017), 47–64.

S. Zhu, Z. Fan and G. Li, Approximate controllability of Riemann–Liouville fractional evolution equations with integral contractor assumption, J. Appl. Anal. Comput. 8 (2018), 532–548.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-06-20

How to Cite

1.
ZHU, Shouguo, FAN, Zhenbin and LI, Gang. Topological characteristics of solution sets for fractional evolution equations and applications to control systems. Topological Methods in Nonlinear Analysis. Online. 20 June 2019. Vol. 54, no. 1, pp. 177 - 202. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 54, No 1 (September 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop