Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The limit cycles of a class of quintic polynomial vector fields
  • Home
  • /
  • The limit cycles of a class of quintic polynomial vector fields
  1. Home /
  2. Archives /
  3. Vol 54, No 1 (September 2019) /
  4. Articles

The limit cycles of a class of quintic polynomial vector fields

Authors

  • Jaume Llibre https://orcid.org/0000-0002-9511-5999
  • Tayeb Salhi https://orcid.org/0000-0002-1505-5464

Keywords

Limit cycle, periodic orbit, inverse integrating factor, polynomial vector field

Abstract

Using the inverse integrating factor we study the limit cycles of a class of polynomial vector fields of degree $5$.

References

A.A. Andronov, E.A. Leontovich, I.I. Gordon and A.L. Maier, Qualitative Theory of Second-Order Dynamical Systems, Wiley, New York, 1973.

R. Asheghi and H.R.Z. Zangeneh, Bifurcations of limit cycles for a quintic Hamiltonian system with a double cuspidal loop, Comput. Math. Appl. 59 (2010), 1409—1418.

J. Chavarriga, H. Giacomini and J. Giné, On a new type of bifurcation of limit cycles for a planar cubic system, Nonlinear Anal. 36 (1999), 139–149.

C. Du and Y. Liu, General center conditions and bifurcation of limit cycles for a quasisymmetric seventh degree system, Comput. Math. Appl. 56 (2008), 2957–2969.

F. Dumortier, J. Llibre and J.C. Artés, Qualitative Theory of Planar Differential Systems, UniversiText, Springer–Verlag, New York, 2006.

I.A. Garcı́a and M. Grau, A survey on the inverse integrating factor, Qual. Theory Dyn. Syst. 9 (2010), 115—166.

H. Giacomini, J. Llibre and M. Viano, On the nonexistence, existence, and uniquennes of limit cycles, Nonlinearity 9 (1996), 501–516.

H. Giacomini, J. Llibre and M. Viano, On the shape of limit cycles that bifurcate from Hamiltonian centers, Nonlinear Anal. 41 (2001), 523–537.

H. Giacomini, J. Llibre and M. Viano, The shape of limit cycles that bifurcate from non–Hamiltonian centers, Nonlinear Anal. 43 (2001), 837–859.

H. Giacomini, J. Llibre and M. Viano, Arbitrary order bifurcations for perturbed Hamiltonian planar systems via the reciprocal of an integrating factor, Nonlinear Anal. 48 (2002), 117–136.

H. Giacomini, J. Llibre and M. Viano, Semistable limit cycles that bifurcate from centers, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 3489–3498.

E.A. González, Generic properties of polynomial vector fields at infinity, Trans. Amer. Math. Soc. 143 (1969), 201–222.

D. Hilbert, Mathematische Problem (lecture), Second Internat. Congress Math. Paris, 1900, Nachr. Ges. Wiss. Göttingen Math.–Phys. Kl. 1900, 253–297.

M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974.

Yu. S. Ilyashenko, Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc. 39 (2002), 301–354.

J. Llibre and G. Rodrı́guez, Configurations of limit cycles and planar polynomial vector fields, J. Differential Equations 198 (2004), 374–380.

Y. Yanqian et al., Theory of Limit Cycles, Translations of Math. Monographs, Vol. 66, Amer. Math. Soc., Providence, 1986.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-07-13

How to Cite

1.
LLIBRE, Jaume and SALHI, Tayeb. The limit cycles of a class of quintic polynomial vector fields. Topological Methods in Nonlinear Analysis. Online. 13 July 2019. Vol. 54, no. 1, pp. 141 - 151. [Accessed 3 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 54, No 1 (September 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop