Stability of multivalued attractor
Keywords
Converse of Banach theorem, multivalued map, multivalued attractor, stabilityAbstract
Stimulated by recent problems in the theory of iterated function systems, we provide a variant of the Banach converse theorem for multivalued maps. In particular, we show that attractors of continuous multivalued maps on metric spaces are stable. Moreover, such attractors in locally compact, complete metric spaces may be obtained by means of the Banach theorem in the hyperspace.References
J. Andres and J. Fišer, Metric and topological multivalued fractals, Intrnat. J. Bifur. Chaos Appl. Sci. Engrg. 14 (2004), no. 4, 1277–1289.
J. Andres, J. Fišer, G. Gabor and K. Leśniak, Multivalued fractals, Chaos Solitons Fractals 24 (2005), no. 3, 665–700.
J. Andres and M. Rypka, Multivalued fractals and hyperfractals, Internat. J. Bifurc. Chaos Appl. Sci. Engrg. 22 (2012), no. 1, 1250009.
J. Andres and M. Rypka, Visualization of hyperfractals, Internat. J. Bifurc. Chaos Appl. Sci. Engrg. 23 (2013), no. 10, 1350167.
R. Atkins, M.F. Barnsley, A. Vince and D.C. Wilson, A characterization of hyperbolic affine iterated function systems, Topol. Proc. 36 (2010), 189–211.
T. Banakh, W. Kubiś, N. Novosad, M. Nowak and F. Strobin, Contractive function systems, their attractors and metrization, Topol. Methods Nonlinear Anal. 46 (2015), no. 2, 1029–1066.
T. Banakh and M. Nowak, A 1-dimensional Peano continuum which is not an IFS attractor, Proc. Amer. Math. Soc. 141 (2013), no. 3, 931–935.
M.F. Barnsley, B. Harding and M. Rypka, Measure preserving fractal homeomorphisms, Fractals, Wavelets and their Applications (C. Bandt, ed.), Springer Proceedings in Mathematics and Statistics, vol. 92, Springer, Berlin, 2014, 79–102.
M.F. Barnsley and K. Leśniak, On the continuity of the Hutchinson Operator, Symmetry 7 (2015), 1831–1840.
M.F. Barnsley, K. Leśniak and M. Rypka, Chaos game for IFSs on topological spaces, J. Math. Anal. Appl. 435 (2016), no. 2, 1458–1466.
M.F. Barnsley, K. Leśniak and M. Rypka, Basic topological structure of fast basins, Fractals, doi: 10.1142/S0218348X18500111,
M.F. Barnsley and A. Vince, The Conley attractors of an iterated function system, Bull. Austral. Math. Soc. 88 (2013), no. 2, 267–279.
M. F. Barnsley, D.C. Wilson, K. Leśniak, Some recent progress concerning topology of fractals, Recent Progress in General Topology III (K.P. Hart, J. van Mill, P. Simon, eds.), Atlantis Press, Amsterdam, 2014, 69–92.
M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 1 (1962), no. 1, 74–79.
J.L.G. Guirao, D. Kwietniak, M. Lampart, P. Oprocha and A. Peris, Chaos on hyperspaces, Nonlinear Anal. 71 (2009), no. 1, 1–8.
J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.
J. Jachymski, A short proof of the converse to the contraction principle and some related results, Topol. Methods Nonlinear Anal. 15 (2000), 179–186.
L. Janos, A converse of Banach’s contraction theorem, Proc. Amer. Math. Soc. 18 (1967), no. 2, 287–289.
A. Kameyama, Distances on topological self-similar sets and the kneading determinants, J. Math. Kyoto Univ. 40 (2000), no. 4, 604–672.
B. Kieninger, Iterated function systems on compact Hausdorff spaces, Shaker (2002).
A. Lasota and J. Myjak, Semifractals, Bull. Polish Acad. Sci. Math. 44 (1996), 5–21.
A. Lasota and J. Myjak, Attractors of multifunctions, Bull. Polish Acad. Sci. Math. 48 (2000), no. 3, 319–334.
A. Lasota and J. Myjak, Fractals, multifunctions and Markov operators, Trends in Mathematics: Fractals in Graz 2001 (P. Grabner, W. Woess, eds.) Birkhäuser, Basel, (2002), 197–210.
S. Leader, A topological characterization of Banach contractions, Pacific J. Math 69 (1977), no. 2, 461–466.
S. Leader, Uniformly contractive fixed points in compact metric spaces, Proc. Amer. Math. Soc. 86 (1982), no. 1, 153–158.
P. R. Meyers, A converse to Banach’s contraction theorem, J. Res. Nat. Bur. Standards Sect. B 71, (1967), 73–76.
A. Mihail, A topological version of iterated function systems, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. 58 (2012), no. 1, 105–120.
J. Myjak and T. Szarek, Attractors of iterated function systems and Markov operators, Abstr. Appl. Anal. 2003:8 (2003), 479–502.
S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math 30 (1969), 475–488.
M. Nowak and T. Szarek, The shark teeth is a topological IFS-attractor, Siberian Math. J. 55 (2014), no. 2, 296–300.
V.I. Opoitsev, A converse to the principle of contracting maps, Russian Math. Surveys 31 (1976), no. 4, 175–204.
R.F. Williams, Composition of contractions, Bol. Soc. Brasil. Mat. 2 (1971), no. 2, 55–59.
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 0
Number of citations: 0