Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Strong solutions in $L^2$ framework for fluid-rigid body interaction problem. Mixed case
  • Home
  • /
  • Strong solutions in $L^2$ framework for fluid-rigid body interaction problem. Mixed case
  1. Home /
  2. Archives /
  3. Vol 52, No 1 (September 2018) /
  4. Articles

Strong solutions in $L^2$ framework for fluid-rigid body interaction problem. Mixed case

Authors

  • Hind Al Baba
  • Nikolai V. Chemetov
  • Šárka Nečasová
  • Boris Muha

Keywords

Fluid-rigid motion interaction, Navier boundary condition, strong solution

Abstract

The paper deals with the problem describing the motion of a rigid body inside a viscous incompressible fluid when the mixed boundary conditions are considered. At the fluid-rigid body interface the slip Navier boundary condition is prescribed, having the continuity of velocity just in the normal component, and the Dirichlet condition is given on the boundary of the fluid domain. The existence and uniqueness of the local strong solution is proven by the local transformation and the fixed point argument.

References

N. Chemetov and Š. Nečasová, The motion of the rigid body in the viscous fluid including collisions. Global solvability result, Nonlinear Anal. Real World Appl. 34 (2017), 416–445.

C. Conca, J. San Martin and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (2000), 1019–1042.

B. Desjardins and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal. 146 (1999), 59–71.

B. Desjardins and M.J. Esteban, On weak solutions for fluid-rigid structure interaction: Compressible and incompressible models, Comm. Partial Differential Equations 25 (2000), 1399–1413.

G.P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, Handbook of Mathematical Fluid Dynamics, Vol. 1, (Friedlander, D. Serre, ed.), Elsevier, 2002.

D. Gérard-Varet and M. Hillairet, Existence of weak solutions up to collision for viscous fluid-solid systems with slip, Comm. Pure Appl. Math. 67 (2014), no. 12, 2022–2075.

D. Gérard-Varet, M. Hillairet and C. Wang, The influence of boundary conditions on the contact problem in a3D Navier–Stokes flow, J. Math. Pures Appl. (9) 103 (2015), no. 1, 1–38.

M.D. Gunzburger, H. Lee and G. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 (2000), no. 3, 219–266.

T.I. Hesla, Collision of smooth bodies in a viscous fluid: A mathematical investigation, PhD Thesis, Minnesota, 2005.

M. Hillairet, Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations 32 (2007), no. 7–9, 1345–1371.

K.-H. Hoffmann and V.N. Starovoitov, On a motion of a solid body in a viscous fluid. Two dimensional case, Adv. Math. Sci. Appl. 9 (1999), 633–648.

A. Inoue and M. Wakimoto, On existence of solutions of the Navier–Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977) , no. 2, 303–319.

T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246–274.

T. Kato, Abstract evolution equations of parabolic type in Banach and Hilbert spaces, Nagoya Math. J. 19 (1961), 93–125.

J. Neustupa and P. Penel, Existence of a weak solution to the Navier–Stokes equation with Navier’s boundary condition around striking bodies, Comptes Rendus Mathematique 347 (2009), no. 11–12, 685–690.

J. Neustupa and P. Penel, A Weak solvability of the Navier–Stokes equation with Navier’s boundary condition around a ball striking the wall, Advances in Mathematical Fluid Mechanics: Dedicated to Giovanni Paolo Galdi, Springer–Verlag Berlin, 2010, pp. 385–408.

Y. Shibata and R. Shimada, On a generalized resolvent estimate for the Stokes system with Robin boundary condition, J. Math. Soc. Japan 59 (2007), no. 2, 469–519.

T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations 8 (2003), no. 12, 1499–1532.

T. Takahashi and M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech. 6 (2004), no. 1, 53–77.

C. Wang, Strong solutions for the fluid-solid systems in a 2D domain, Asymptot. Anal. 89 (2014), no. 3–4, 263–306.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2018-08-04

How to Cite

1.
AL BABA, Hind, CHEMETOV, Nikolai V., NEČASOVÁ, Šárka & MUHA, Boris. Strong solutions in $L^2$ framework for fluid-rigid body interaction problem. Mixed case. Topological Methods in Nonlinear Analysis [online]. 4 August 2018, T. 52, nr 1, s. 337–350. [accessed 24.3.2023].
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 52, No 1 (September 2018)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop