Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Steady solutions to the Navier-Stokes-Fourier system for dense compressible fluid
  • Home
  • /
  • Steady solutions to the Navier-Stokes-Fourier system for dense compressible fluid
  1. Home /
  2. Archives /
  3. Vol 52, No 1 (September 2018) /
  4. Articles

Steady solutions to the Navier-Stokes-Fourier system for dense compressible fluid

Authors

  • Šimon Axman
  • Piotr Bogusław Mucha
  • Milan Pokorný

Keywords

Steady compressible Navier-Stokes-Fourier system, low Mach number limit, strong solution, denisty dependent viscosities, large data, existence via Schauder typefixed point theorem

Abstract

We establish existence of strong solutions to the stationary Navier-Stokes-Fourier system for compressible flows with density dependent viscosities in regime of heat conducting fluids with very high densities. In comparison to the known results considering the low Mach number case, we work in the $L^p$-setting combining the methods for the weak solutions with the method of decomposition. Moreover, the magnitude of gradient of the density as well as other data are not limited, our only assumption is the given total mass must be sufficiently large.

References

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727.

T. Alazard, Low Mach number limit of the full Navier–Stokes equations, Arch. Ration. Mech. Anal. 180 (2006), no. 1, 1–73.

Š. Axmann, P.B. Mucha and M. Pokorný, Steady solutions to viscous shallow water equations. The case of heavy water, Commun. Math. Sci. 15 (2017), no. 5, 1385–1402.

H. Beirão Da Veiga, An Lp -theory for the n-dimensional, stationary, compressible Navier–Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions, Comm. Math. Phys. 109 (1987), no. 2, 229–248.

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys. 238 (2003), 211–223.

D. Bresch, B. Desjardins and D. Gerard-Varet, On compressible Navier–Stokes equations with density dependent viscosities in bounded domains, J. Math. Pures Appl. (9) 87 (2007), 227–235.

H.J. Choe and B.J. Jin, Existence of solutions of stationary compressible Navier–Stokes equations with large force, J. Funct. Anal. 177 (2000), no. 1, 54–88.

Ch. Dou, F. Jiang, S. Jiang and Y.-F. Yang, Existence of strong solutions to the steady Navier–Stokes equations for a compressible heat-conductive fluid with large forces, J. Math. Pures Appl. 103, no. 5, 1163–1197.

R. Farwig, Stationary solutions of the Navier–Stokes equations for a compressible, viscous and heat-conductive fluid, SFB 256, University Bonn, 1988, preprint.

R. Farwig, Stationary solutions of compressible Navier–Stokes equations with slip boundary conditions, Comm. Partial Differential Equations 14 (1989), no. 11, 1579–1606.

E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford (2004).

E. Feireisl, P.B. Mucha, A. Novotný and M. Pokorný, Time-periodic solutions to the full Navier–Stokes–Fourier system, Arch. Ration. Mech. Anal. 204 (2012), 745–786.

P.B. Mucha, On cylindrical symmetric flows through pipe-like domains, J. Differential Equations 201 (2004), no. 2, 304–323.

P.B. Mucha and T. Piasecki, Compressible perturbation of Poiseuille type flow, J. Math. Pures Appl. (9) 102 (2014), no. 2, 338–363.

P.B. Mucha and M. Pokorný, The rot-div system in exterior domains, J. Math. Fluid Mech. 16 (2014), no. 4, 701–720.

P.B. Mucha and M. Pokorný, On the steady compressible Navier–Stokes–Fourier system, Comm. Math. Phys. 288 (2009), no. 1, 349–377.

P.B. Mucha and R. Rautmann, Convergence of Rothe’s scheme for the Navier–Stokes equations with slip conditions in 2D domains, ZAMM Z. Angew. Math. Mech. 86 (2006), no. 9, 691–701.

A. Novotný and M. Padula, Lp -approach to steady flows of viscous compressible fluids in exterior domains, Arch. Ration. Mech. Anal. 126 (1994), no. 3, 243–297.

M. Padula, Existence and continuous dependence for solutions to the equations of a onedimensional model in gas dynamics, Meccanica 17 (1981), 128–135.

M. Padula, Existence and uniqueness for viscous steady compressible motions, Proc. Sem. Fis. Mat., Dinamica dei Fluidi e dei gaz ionizzati, Trieste (1982).

M. Padula, Existence and uniqueness for viscous steady compressible motions, Arch. Ration. Mech. Anal. 97 (1987), no. 2, 89–102.

T. Piasecki and M. Pokorný, Strong solutions to the Navier–Stokes–Fourier system with slip–inflow boundary conditions, ZAMM Z. Angew. Math. Mech. 94 (2014), no. 12, 1035–1057.

V.A. Solonnikov, Overdetermined elliptic boundary-value problems, J. Sov. Math. 1 (1973), no. 4, 477–512.

A. Valli, Periodic and stationary solutions for compressible Navier–Stokes equations via a stability method, Ann. Sc. Norm. Sup. Pisa (1) 4 (1983), 607–646.

A. Valli, On the existence of stationary solutions to compressible Navier–Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire (1) 4 (1987), 99–113.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2018-08-04

How to Cite

1.
AXMAN, Šimon, MUCHA, Piotr Bogusław & POKORNÝ, Milan. Steady solutions to the Navier-Stokes-Fourier system for dense compressible fluid. Topological Methods in Nonlinear Analysis [online]. 4 August 2018, T. 52, nr 1, s. 259–283. [accessed 25.3.2023].
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 52, No 1 (September 2018)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop