Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Schauder's Theorem and the method of a priori bounds
  • Home
  • /
  • Schauder's Theorem and the method of a priori bounds
  1. Home /
  2. Archives /
  3. Vol 52, No 1 (September 2018) /
  4. Articles

Schauder's Theorem and the method of a priori bounds

Authors

  • Andrzej Granas
  • Marlène Frigon

Keywords

Fixed point, nonlinear alternative, Leray-Schauder alternative, Schauder fixed point theorem, coincidence, a priori bounds, differential equation

Abstract

We first recall simple proofs relying on the Schauder Fixed Point Theorem of the Nonlinear Alternative, the Leray-Schauder Alternative and the Coincidence Alternative for compact maps on normed spaces. We present also an alternative for compact maps defined on convex subsets of normed spaces. Those alternatives permit to apply the method of a priori bounds to obtain results establishing the existence of solutions to differential equations. Using those alternatives, we present some new proofs of existence results for first order differential equations.

References

R.G. Bartle and L.M. Graves, Mappings between function spaces, Trans. Amer. Math. Soc. 72 (1952), 400–413.

N. El Khattabi, M. Frigon and N. Ayyadi, Multiple solutions of boundary value problems with φ-Laplacian operators and under a Wintner–Nagumo growth condition, Bound. Value Probl. 2013:236 (2013), 21 pp.

N. El Khattabi, M. Frigon and N. Ayyadi, Multiple solutions of problems with nonlinear first order differential operators, J. Fixed Point Theory Appl. 17 (2015), 23–42.

A. Granas, On the Leray–Schauder alternative, Topol. Methods Nonlinear Anal. 2 (1993), 225–231.

A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer, New York, 2003.

A. Granas and Z.E.A. Guennoun, Quelques résultats dans la théorie de Bernstein–Carathéodory de l’équation y 00 = f (t, y, y 0 ), C.R. Acad. Sci. Paris Sér. I Math. 306 (1988), 703–706 (in French).

A. Granas, R.B. Guenther and J.W. Lee, On a theorem of S. Bernstein, Pacific J. Math. 74 (1978), 67–82.

A. Granas, R.B. Guenther and J.W. Lee, Some general existence principles in the Carathéodory theory of nonlinear differential systems, J. Math. Pures Appl. (9) 70 (1991), 153–196.

J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610–636.

J. Mawhin, First order ordinary differential equations with several periodic solutions, Z. Angew. Math. Phys. 38 (1987), 257–265.

H. Schaefer, Ueber die Methode der a priori-Schranken, Math. Ann. 129 (1955), 415–416.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2018-03-18

How to Cite

1.
GRANAS, Andrzej and FRIGON, Marlène. Schauder’s Theorem and the method of a priori bounds. Topological Methods in Nonlinear Analysis. Online. 18 March 2018. Vol. 52, no. 1, pp. 99 - 109. [Accessed 8 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 52, No 1 (September 2018)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop