Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On certain variant of strongly nonlinear multidimensional interpolation inequality
  • Home
  • /
  • On certain variant of strongly nonlinear multidimensional interpolation inequality
  1. Home /
  2. Archives /
  3. Vol 52, No 1 (September 2018) /
  4. Articles

On certain variant of strongly nonlinear multidimensional interpolation inequality

Authors

  • Tomasz Choczewski
  • Agnieszka Kałamajska

Keywords

Interpolation inequalities, multiplicative inequalities, Sobolev spaces

Abstract

We obtain the inequality \begin{multline*} \int_{\Omega}|\nabla u(x)|^ph(u(x))dx \\ \leq C(n,p)\int_{\Omega} \Big( \sqrt{ |\nabla^{(2)} u(x)||{\mathcal T}_{h,C}(u(x))|}\Big)^{p}h(u(x))dx, \end{multline*} where $\Omega\subset \mathbb R^n$ and $n\ge 2$, $u\colon\Omega\rightarrow \mathbb R$ is in certain subset in second order Sobolev space $W^{2,1}_{\rom{loc}}(\Omega)$, $\nabla^{(2)} u$ is the Hessian matrix of $u$, ${\mathcal T}_{h,C}(u)$ is a certain transformation of the continuous function $h(\cdot)$. Such inequality is the generalization of a similar inequality holding in one dimension, obtained earlier by second author and Peszek.

References

S. Bloom, First and second order Opial inequalities, Studia Math. 126 (1997), no. 1, 27–50.

R. Brown, V. Burenkov, S. Clark and D. Hinton, Second order Opial inequalities in Lp spaces and applications, Analytic and Geometric Inequalities and Applications (Rassias, Themistocles et al., eds.), Mathematics and its Applications, vol. 478, pp. 37–52, Kluwer, Dordrecht, 1999.

C. Capogne, A. Fiorenza and A. Kalamajska, Strongly nonlinear Gagliardo–Nirenberg inequality in Orlicz spaces and Boyd indices, Rend. Lincei Mat. Appl. 28 (2017), 119–141.

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, Courant Lecture Notes in Mathematics, New York, Providence, 2010.

H. Federer, Geometric Measure Theory, Springer, New York, 1969.

E. Fermi, Un methodo statistico par la determinazione di alcune properitá dell’ atoma, Rend. Accad. Naz. del Lincei Cl. Sci. Fis. Mat. e Nat. 6 (1927), 602–607.

E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 8 (1959), 24–51.

A. Kalamajska and K. Mazowiecka, Some regularity results to the generalized Emden–Fowler equation with irregular data, Math. Methods Appl. Sci. 38 (2015), no. 12, 2479–2495.

A. Kalamajska and J. Peszek, On some nonlinear extensions of the Gagliardo–Nirenberg inequality with applications to nonlinear eigenvalue problems, Asymptot. Anal. 77 (2012), no. 3–4, 169–196.

A. Kalamajska and J. Peszek, On certain generalizations of the Gagliardo–Nirenberg inequality and their applications to capacitary estimates and isoperimetric inequalities, J. Fixed Point Theory Appl. 13 (2013), no. 1, 271–290.

A. Kalamajska and K. Pietruska-Paluba, Gagliardo–Nirenberg inequalities in Orlicz spaces, Indiana Univ. Math. J. 55 (2006), no. 6, 1767–1789.

A. Kufner, O. John and S. Fučı́k, Function Spaces, Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff, Leyden; Academia, Prague, 1977.

V.G. Mazy’a, Sobolev Spaces, Springer, Berlin, 1985.

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. di Pisa 13 (1959), 115–162.

Z. Opial, Sur une inégalité, Ann. Polon. Math. 8 (1960), 29–32.

J. Peszek, Discrete Cucker–Smale flocking model with a weakly singular weight, SIAM J. Math. Anal. 47 (2015), no. 5, 3671–3686.

L.H. Thomas, The calculation of atomic fields, Proc. Camb. Phil. Soc. 23 (1927), 1473–1484.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2018-03-18

How to Cite

1.
CHOCZEWSKI, Tomasz & KAŁAMAJSKA, Agnieszka. On certain variant of strongly nonlinear multidimensional interpolation inequality. Topological Methods in Nonlinear Analysis [online]. 18 March 2018, T. 52, nr 1, s. 49–67. [accessed 24.3.2023].
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 52, No 1 (September 2018)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop