Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On two symmetries in the theory of $m$-Hessian operators
  • Home
  • /
  • On two symmetries in the theory of $m$-Hessian operators
  1. Home /
  2. Archives /
  3. Vol 52, No 1 (September 2018) /
  4. Articles

On two symmetries in the theory of $m$-Hessian operators

Authors

  • Nina Ivochkina
  • Nadezhda V. Filimonenkova

Keywords

Partial differential fully nonlinear operators, m-Hessian operators, skew symmetry, symmetric functions, Hessian integrals, isoperimetric variational problem, Poincar\'e-type inequalities

Abstract

The modern theory of fully nonlinear operators had been inspired by the skew symmetry of minors in cooperation with the symmetry of symmetric functions. We present some consequences of this interaction for $m$-Hessian operators. One of them is setting of the isoperimetric variational problem for Hessian integrals. The $m$-admissible minimizer is found that allows a new simple proof of the well-known Poincaré-type inequalities for Hessian integrals. Also a new set of inequalities, generated by a special finite set of functions, is presented.

References

J.M. Ball, Convexity conditions and existence theorems in nonlinear elastisity, Arch. Ration. Mech. Anal. 63 (1977), no. 4, 339–403.

E. Bedford and B.A. Taylor, Variational properties of the complex Monge–Ampère equation I: Dirichlet principle, Duke Math. J. 45 (1978), 375–405.

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations III. Functions of the Hessian, Acta Math. 155 (1985), 261–301.

L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second-order elliptic equations V. The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math. 41 (1988), 47–70.

K.S. Chou (K. Tso), On a real Monge–Ampère functional, Invent. Math. 101 (1990), 425–448.

K.S. Chou and X.-J. Wang, A variational theory of the Hessian equations, Comm. Pure Appl. Math. 54 (2001), 1029–1064.

D.-P. Covei, The Keller–Osserman problem for the k-Hessian operator, 2015, https: //arxiv.org/abs/1508.04653.

L.C. Evans, Classical solutions of fully nonlinear convex second order elliptic equations, Comm. Pure Appl. Math. 25 (1982), 333–363.

N.M. Ivochkina, On the possibility of integral formulae in Rn , Zap. Nauchn. Sem. LOMI 52 (1975), 35–51.

N.M. Ivochkina, Second order equations with d-elliptic operators, Trudy Mat. Inst. Steklov 147 (1980), 45–56 (in Russian); English transl. Proc. Steklov Inst. Math. 2 (1981).

N.M. Ivochkina, A description of the stability cones generated by differential operators of Monge–Ampère type, Mat. Sb. 122 (1983), 265–275 (in Russian); English transl. Math. USSR Sb. 50 (1985).

N.M. Ivochkina, Variational problems connected to Monge–Ampère type operators, Zap. Nauchn. Semin. LOMI 167 (1988), 186–189.

N.M. Ivochkina, From Gårding cones to p-convex hypersurfaces, J. Math. Sci. 201 (2014), 634–644.

N.M. Ivochkina, On some properties of the positive m-Hessian operators in C 2 (Ω), J. Fixed Point Th. Appl. 14 (2014), no. 1, 79–90.

N.M. Ivochkina and N.V. Filimonenkova, On the backgrounds of the theory of mHessian equations, Comm. Pure Appl. Anal. 12 (2013), no. 4, 1687–1703.

N.M. Ivochkina and N.V. Filimonenkova, On algebraic and geometric conditions in the theory of Hessian equations, J. Fixed Point Theory Appl. 16 (2015), no. 1, 11–25.

N.M. Ivochkina, S.I. Prokof’eva, and G.V. Yakunina, The Gårding cones in the modern theory of fully nonlinear second order differential equations, J. of Math. Sci. 184 (2012), no. 3, 295–315.

L. Gårding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957–965.

N.V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk. SSSR Ser. Mat. 47 (1983), 75–108 (in Russian); English transl. Math. USSR Izv. 22 (1984), 67–97.

V.V. Lychagin, Contact geometry and second-order nonlinear differential equations, Russian Math. Surveys 34 (1979), no. 1, 149–180.

A.V. Pogorelov, The Minkowski multidimensional problem, “Nauka”, Moscow, 1975 (in Russian); English transl. New York, J. Wiley (1978).

R.C. Reilly On the Hessian of a function and the curvatures of its graph, Michigan Math. J. 20 (1973/1974), 373–383.

H. Rund, Integral formulae associated with Euler–Lagrange operators of multiple integral problems in the calculus of variations, Aequationes Math. 11 (1974), no. 2/3, 212–229.

N.S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal. 111 (1990), 153–170.

N.S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995), 151–164.

N.S. Trudinger and X.-J. Wang, Hessian measures I, Topol. Methods Nonlinear Anal. 10 (1997), 225–239.

N.S. Trudinger and X.-J. Wang, A Poincaré type inequality for Hessian integrals, Calc. Var. Partial Differenytial Equations 6 (1998), 315–328.

I.E. Verbitsky, The Hessian Sobolev inequality and its extensions, Discrete Contin. Dyn. Syst. 35 (2015), no. 12, 6165–6179.

X.-J. Wang, A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J. 43 (1994), 25–54.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2018-02-12

How to Cite

1.
IVOCHKINA, Nina and FILIMONENKOVA, Nadezhda V. On two symmetries in the theory of $m$-Hessian operators. Topological Methods in Nonlinear Analysis. Online. 12 February 2018. Vol. 52, no. 1, pp. 31 - 47. [Accessed 7 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 52, No 1 (September 2018)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop