Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On a class of intermediate local-nonlocal elliptic problems
  • Home
  • /
  • On a class of intermediate local-nonlocal elliptic problems
  1. Home /
  2. Archives /
  3. Vol 49, No 2 (June 2017) /
  4. Articles

On a class of intermediate local-nonlocal elliptic problems

Authors

  • Claudianor O. Alves
  • Francisco Julio S. A. Corrêa
  • Michel Chipot

Keywords

Galerkin method, intermediate local-nonlocal elliptic problem, Brouwer fixed point theorem

Abstract

This paper is concerned with the existence of solutions for a class of intermediate local-nonlocal boundary value problems of the following type: $$ -\rom{div} \bigg[a\bigg(\fint_{\Omega (x,r)}u(y)dy\bigg)\nabla u\bigg] = f(x,u,\nabla u ) \quad \mbox{in } \Omega, \ u\in H_{0}^{1}(\Omega ), \leqno{(\rom{IP})} $$% where $\Omega$ is a bounded domain of $\mathbb{R}^{N}$, $a\colon\mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, $f\colon \Omega \times \mathbb{R} \times \mathbb{R}^{N}$ is a given function, $r> 0$ is a fixed number, $\Omega (x,r)=\Omega \cap B(x,r)$, where $B(x,r)=\{ y\in \mathbb{R}^{N}: |y-x|< r\}$. Here $|\cdot |$ is the Euclidian norm, $$ \fint_{\Omega (x,r)}u(y)dy=\frac{1}{\rom{meas}\hspace{.06em}(\Omega (x,r))}\int_{\Omega (x,r)}u(y)dy $$ and $\rom{meas}\hspace{.06em}(X)$ denotes the Lebesgue measure of a measurable set $X\subset \mathbb{R}^{N}$.

References

C.O. Alves, M. Delgado, M.A.S. Souto and A. Suárez, Existence of positive solution of a nonlocal logistic population model, Z. Angew. Math. Phys. 66 (2015), 943–953.

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.

H. Brezis and S. Kamin, Sublinear elliptic equations in RN , Manuscripta Math. 74 (1992), 87–106.

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), 55–64.

M. Chipot, Elements of Nonlinear Analysis, Birkhäuser, Basel, 2000.

M. Chipot, Remarks on some class of nonlocal elliptic problems, Recent Advances on Elliptic and Parabolic Issues, World Scientific, Singapore, 2006, 79–102.

M. Chipot and N.-H. Chang, On some mixed boundary value problems with nonlocal diffusion, Adv. Math. Sci. Appl. 14 (2004), 1–24.

M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal. 30 (1997), 4619–4627.

M. Chipot and J.F. Rodrigues, On a class of nonlocal elliptic problems, Mathematical Modelling and Numerical Analysis 26 (1992), 447–468.

D.G. De Figueiredo, Positive solutions of semilinear elliptic problems, Lecture Notes in Math. 957, Springer, Berlin, 1982, 34–87.

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.

J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-12-16

How to Cite

1.
ALVES, Claudianor O., CORRÊA, Francisco Julio S. A. & CHIPOT, Michel. On a class of intermediate local-nonlocal elliptic problems. Topological Methods in Nonlinear Analysis [online]. 16 December 2016, T. 49, nr 2, s. 497–509. [accessed 30.3.2023].
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 49, No 2 (June 2017)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop