Euler characteristics of digital wedge sums and their applications
Keywords
Euler characteristic, Lefschetz number, digital image, fixed point theorem, fixed point property, wedge sum, digital k-surface, digital homologyAbstract
Many properties or formulas related to the ordinary Euler characteristics of topological spaces are well developed under many mathematical operands, e.g.\ the product property, fibration property, homotopy axiom, wedge sum property, inclusion-exclusion principle \cite{S1}, etc. Unlike these properties, the digital version of the Euler characteristic has its own feature. Among the above properties, we prove that the digital version of the Euler characteristic has the wedge sum property which is of the same type as that for the ordinary Euler characteristic. This property plays an important role in fixed point theory for digital images, digital homotopy theory, digital geometry and so forth.References
H. Arslan, I. Karaca and A. Oztel, Homology groups of n-dimensional digital images, XXI. Turkish National Mathematics Symposium (2008), 1-13.
G. Bertrand, Simple points, topological numbers and geodesic neighbourhoods in cubic grids, Pattern Recognition Letters 15 (1994), 1003-1011.
G. Bertrand, A. Imiy and R. Klette, Digital and image geomerty, LNCS 2243, Springer, New York, 2001.
G. Bertrand and M. Malgouyres, Some topological properties of discrete surfaces, J. Math. Imaging Vision 20 (1999), 207-221.
L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839.
L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999), 51-62.
L. Boxer, O. Ege, I. Karaca and J. Lopez, Digital Fixed Points, Approximate Fixed Points, and Universal Functions, preprint, http://arxiv.org/abs/1507.02349.
L. Boxer, I. Karaca and A. Oztel, Topological invariants in digital images, J. Math. Sci. Adv. Appl. 11 (2011), 109-140.
A.I. Bykov, L.G. Zerkalov and M.A. Rodriguez Pineda, Index of a point of 3D digital binary image and algorithm of computing its Euler characteristic, Pattern Recognition 32 (1999), 845-850.
O. Ege and I. Karaca, Lefschetz xed point theorem for digital images, Fixed Point Theory Appl. (2013) 2013:253; doi:10.1186/1687-1812-2013-253.
O. Ege and I. Karaca, Applications of the Lefschetz Number to Digital Images, Bull. Belg. Math. Soc. Simon Stevin 21 (5) (2014), 823-839.
O. Ege, I. Karaca and M.E. Ege, Some results on simplicial homology groups 2D digital images, Int. J. Inf. Comput. Sci. 1 (8) (2012), 198-203.
O. Ege, I. Karaca and M.E. Ege, Fundamental properties of digital simplicial homology groups, Amer. J. Comput. Techn. Appl. 1 (2) (2013), 25-41.
O. Ege, I. Karaca and M.E. Ege, Relative homology groups of digita images, Appl. Math. Inf. Sci. 8 (5) (2014), 2337-2345.
A.V. Evako , R. Kopperman and Y.V. Mukhin, Dimensional properties of graphs and digital spaces, J. Math. Imaging Vision 6 (1996), 109-119.
S.-E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (1-3) (2005), 73-91.
S.-E. Han, Connected sum of digital closed surfaces, Inf. Sci. 176 (3) (2006), 332-348.
S.-E. Han, Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Inf. Sci. 176 (1) (2006), 120-134.
S.-E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Inf. Sci. 177 (16) (2006), 3314-1329.
S.-E. Han, Strong k-deformation retract and its applications, J. Korean Math. Soc. 44 (6) (2007), 1479-1503.
S.-E. Han, The k-homotopic thinning and a torus-like digital image in Zn, J. Math. Imaging Vision 31 (1) (2008), 1-16.
S.-E. Han, KD-(k0; k1)-homotopy equivalence and its applications, J. Korean Math. Soc. 47 (5) (2010), 1031-1054.
S.-E. Han, Ultra regular covering spaces and its automorphism group, Int. J. Appl. Math. Comput. Sci. 20 (4) (2010), 699-710.
S.-E. Han, Digital version of the xed point theory, Proceedings of 11th ICFPTA (Abstracts) (2015), p. 60.
S.-E. Han, Fixed point theorems for digital images, Honam Math. J. 37 (4) (2015), 595-608.
S.-E. Han, Banach xed point theorem from the viewpoint of digital topology, J. Nonlinear Sci. Appl. 9 (3) (2016), 895-905.
S.-E. Han, Contractibility and Fixed point property: The case of Khalimsky topological spaces, Fixed Point Theory Appl. (2016) 2016:75, DOI: 10.1186/s13663-016-0566-8.
S.-E. Han and B.G. Park, Digital graph (k0; k1)-isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/36.htm (2003).
S.-E. Han and B.G. Park, Digital graph (k0; k1)-homotopy equivalence and its applications, http://atlas-conferences.com/c/a/k/b/35.htm (2003).
A. Imiya and U. Eckhardt The Euler characteristics of discrete objects and discrete quasi-objects, Comput. Vision and Image Understanding 75 (3) (1999), 307-318.
A.V. Ivashchenko, Contractible transformations do not change the homology groups of graphs, Discr. Math. 126 (1994), 159-170.
A.V. Ivashchenko, Representation of smooth surfaces by graphs, transformations of graphs which do not change the Euler characteristic of graphs, Discr. Math. 122 (1993), 219-233.
T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology, Springer-Verlag, New York, 2004
E. Khalimsky, Motion, deformation, and homotopy in nite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987), 227-234.
E. Khalimsky, R. Kopperman and P.R. Meyer, Computer graphics and connected topologies on nite ordered sets, Topology Appl. 36 (1) (1991), 1-17.
C. Kim and Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985.
T.Y. Kong and A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
V.A. Kovalevsky, Finite topology as applied to image analysis, Computer Vision, Graph-ics, and Image Processing 46 (1989), 141-161.
V.A. Kovalevsky, Axiomatic locally niter spaces, J. Math. Imageing Vision 26 (2006), 41-58.
S. Lefschetz, On the xed point formula, Ann. of Math. 38 (4) (1937), 819-822.
R. Malgouyres, Computing the fundamental group in digital spaces, IJPRAI 15 (7) (2001), 1075-1088.
A. McAndrew and C. Osborne, The Euler characteristic on the face-centred cubic lattice, Pattern Recognition Letters 18 (1997), 229-237.
E. Melin, Digital Khalimsky manifolds, J. Math. Imageing Vision 33 (2009), 267-280.
D.G. Morgenthaler and A. Rosenfeld, Surfaces in three dimensional digital images, Information and Control 51 (1981), 227-247.
A. Rosenfeld, Digital topology, Amer. Math. Monthly 86 (1979), 76-87.
A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184.
P.K. Saha and B.B. Chaudhuri, A new approach to computing the Euler characteristic, Pattern Recognition Letters 28 (12) (1995), 1955-1963.
E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.
F. Wyse and D. Marcus et al., Solution to problem 5712, Amer. Math. Monthly 77 (1970), p. 1119.
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 0
Number of citations: 0