Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Global phase portraits of Kukles differential systems with homogenous polynomial nonlinearities of degree 5 having a center
  • Home
  • /
  • Global phase portraits of Kukles differential systems with homogenous polynomial nonlinearities of degree 5 having a center
  1. Home /
  2. Archives /
  3. Vol 48, No 1 (September 2016) /
  4. Articles

Global phase portraits of Kukles differential systems with homogenous polynomial nonlinearities of degree 5 having a center

Authors

  • Jaume Llibre
  • Maurício Fronza da Silva

Keywords

Centers, Kukles, polynomial vector fields, phase portrait, Poincaré disk

Abstract

We provide 22 different global phase portraits in the Poincaré disk of all centers of the so-called Kukles polynomial differential systems of the form $\dot{x} = -y$, $\dot{y} = x+Q_5(x,y)$, where $Q_5$ is a real homogeneous polynomial of degree 5 defined in $\mathbb{R}^2$.

References

C.A. Buzzi, J. Llibre and J.C. Medrado, Phase portraits of reversible linear differential systems with cubic homogeneous polynomial nonlinearities having a non-degenerate center at the origin, Qual. Theory Dyn. Syst. 7 (2009), 369–403.

R. Benterki and J. Llibre, Centers and their perturbation for the Kukles homogeneous polynomial differential systems of degree 4 symmetric with respect to the y-axis, preprint (2015).

F. Dumortier, J. Llibre and J.C. Artés, Qualitative Theory of Planar Differential Systems, Springer, 2006.

J. Giné, Conditions for the existence of a center for the Kukles homogeneous systems, Comput. Math. Appl. 43 (2002), 1261–1269.

J. Giné, J. Llibre and C. Valls, Centers for the Kukles homogeneous systems with odd degree, Bull. London Math. Soc. (2015), doi: 10.1112/blms/bdv005 (to appear).

J. Giné, J. Llibre and C. Valls, Centers for the Kukles homogeneous systems with even degree, preprint (2015).

J. Llibre and T. Salhi, Centers and their perturbation for the Kukles homogeneous polynomial differential systems of degree 4 symmetric with respect to the x-axis, preprint (2015).

K.E. Malkin, Criteria for the center for a certain differential equation, Volz. Mat. Sb. Vyp. 2 (1964), 87–91 (Russian).

L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc. 76 (1954), 127–148.

D. Neumann, Classification of continuous flows on 2-manifold, Proc. Amer. Math. Soc. 48 (1975), 73–81.

E. P. Volokitin, V. V. Ivanov, Isochronicity and commutation of polynomial vector fields, Siberian Math. J. 40 (1999), 22–37.

N.I. Vulpe and K.S. Sibirskiı̆, Centro-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, Dokl. Akad. Nauk SSSR 301 (1988), 1297–1301 (Russian); transl.: Soviet Math. Dokl. 38 (1989), 198-201.

H. Żołądek, The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal. 4 (1994), 79–136.

H. Żołądek, Remarks on: “The classification of reversible cubic systems with center” (Topol. Methods Nonlinear Anal. 4 (1994), 79–136), Topol. Methods Nonlinear Anal. 8 (1996), 335–342.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-08-07

How to Cite

1.
LLIBRE, Jaume and DA SILVA, Maurício Fronza. Global phase portraits of Kukles differential systems with homogenous polynomial nonlinearities of degree 5 having a center. Topological Methods in Nonlinear Analysis. Online. 7 August 2016. Vol. 48, no. 1, pp. 257 - 282. [Accessed 15 May 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 48, No 1 (September 2016)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop