Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Generalized topological transition matrix
  • Home
  • /
  • Generalized topological transition matrix
  1. Home /
  2. Archives /
  3. Vol 48, No 1 (September 2016) /
  4. Articles

Generalized topological transition matrix

Authors

  • Robert Franzosa
  • Ketty A. de Rezende
  • Ewerton R. Vieira

Keywords

Conley index, connection matrices, transition matrices, Morse-Smale system, sweeping method, spectral sequence

Abstract

This article represents a major step in the unification of the theory of algebraic, topological and singular transition matrices by introducing a definition which is a generalization that encompasses all of the previous three. When this more general transition matrix satisfies the additional requirement that it covers flow-defined Conley-index isomorphisms, one proves algebraic and connection-existence properties. These general transition matrices with this covering property are referred to as generalized topological transition matrices and are used to consider connecting orbits of Morse-Smale flows without periodic orbits, as well as those in a continuation associated to a dynamical spectral sequence.

References

M. Barakat and S. Maier-Paape, Computation of connection matrices using the software package conley Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), no. 9, 3033–3056.

M. Barakat and D. Robertz, Conley: computing connection matrices in Maple, J. Symbolic Comput. 44 (2009), no. 5, 540–557.

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38. Amer. Math. Soc., Providence, R.I., 1978. iii+89 pp.

C. Conley and P. Fife, Critical manifolds, travelling waves, and an example from population genetics, J. Math. Biol. 14 (1982), no. 2, 159–176.

O. Cornea, K.A. de Rezende and M.R. Silveira, Spectral Sequences in Conley’s theory. Ergodic Theory and Dynamical Systems, Ergodic Theory Dynam. Systems 30 (2010), no. 4, 1009–1054.

M. Eidenschink, Exploring Global Dynamics: A Numerical Algorithm Based on the Conley Index Theory, Ph.D. Thesis, Georgia Institute of Technology, 1995, 215 pp.

B. Fiedler and K. Mischaikow, Dynamics of bifurcations for variational problems with O(3) equivariance: a Conley index approach ,Arch. Rational Mech. Anal. 119 (1992), no. 2, 145–196.

R. Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions, Trans. Amer. Math. Soc. 298 (1986), no. 1, 193–213.

R. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer. Math. Soc. 311 (1989), no. 2, 561–592.

R. Franzosa, The continuation theory for Morse decompositions and connection matrices. Trans. Amer. Math. Soc. 310 (1988), no. 2, 781–803.

R. Franzosa and K. Mischaikow, Algebraic transition matrices in the Conley index theory, Trans. Amer. Math. Soc. 350 (1998), no. 3, 889–912.

R. Franzosa, K.A. de Rezende and M.R. Silveira, Continuation and Bifurcation Associated to the Dynamical Spectral Sequence, Ergodic Theory Dynam. Systems 334 (2014), 1849–1887.

T. Gedeon, H. Kokubu, K. Mischaikow, H. Oka and J. Reineck, The Conley index for fast-slow systems I: One dimensional slow variables, J. Dynam. Differential Equations 11 (1999), 427–470.

H. Kokubu, On transition matrices, EQUADIFF99, Proceedings of the International Conference on Differential Equations, Berlin, Germany 1–7 August 1999, World Scientific, 2000, pp.219–224, 133–144.

H. Kokubu, K. Mischaikow and H. Oka, Directional Transition Matrix, Banach Center Publications, 47, 1999.

C. McCord, The connection map for attractor-repeller pairs, Trans. Amer. Math. Soc. 307 (1988), no. 1, 195–203.

C. McCord and K. Mischaikow, Connected simple systems, transition matrices, and heteroclinic bifurcations, Trans. Amer. Math. Soc. 333 (1992), no. 1, 397–422.

C. McCord and K. Mischaikow, Equivalence of topological and singular transition matrices in the Conley index theory, Michigan Math. J. 42 (1995), no. 2, 387–414.

K. Mischaikow and M. Mrozek, Conley Index, Handbook of Dynamical Systems, Vol. 2, North-Holland, Amsterdam, 2002, 393–460.

M. Mello, K.A. de Rezende and M.R. Silveira, The convergence of Conley’s spectral sequence via the sweeping algorithm, Topology Appl. 157, (2010), 2111–2130.

T. Moeller, Conley–Morse Chain Maps, Thesis, Georgia Institute of Technology, August 2005.

J. F. Reineck, Connecting orbits in one-parameter families of flows, Ergodic Theory Dynam. Systems 8∗ (1988), Charles Conley Memorial Issue, 359–374.

J. F. Reineck, The connection matrix in Morse–Smale flows, Trans. Amer. Math. Soc. 322 (1990), no. 2, 523–545.

D. A. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41.

D. A. Salamon, Morse theory, The Conley index and Floer homology, Bull. London Math. Soc. 22 (1990), no. 2, 113–140.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-09-02

How to Cite

1.
FRANZOSA, Robert, DE REZENDE, Ketty A. and VIEIRA, Ewerton R. Generalized topological transition matrix. Topological Methods in Nonlinear Analysis. Online. 2 September 2016. Vol. 48, no. 1, pp. 183 - 212. [Accessed 17 November 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 48, No 1 (September 2016)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop