Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A local existence theorem for a class of delay differential equations
  • Home
  • /
  • A local existence theorem for a class of delay differential equations
  1. Home /
  2. Archives /
  3. Vol 48, No 2 (December 2016) /
  4. Articles

A local existence theorem for a class of delay differential equations

Authors

  • Ioan I. Vrabie

DOI:

https://doi.org/10.12775/TMNA.2016.023

Keywords

Delay differential equations, local existence, metric fixed point arguments, topological fixed point arguments, semilinear wave equation, pseudoparabolic equation

Abstract

The goal of this paper is to show that some classes of partial differential functional equations admit a natural formulation as ordinary functional differential equations in infinite dimensional Banach spaces. Moreover, the equations thus obtained are driven by continuous right-hand sides satisfying the compactness assumptions required by the infinite-dimensional version of a Peano-like existence theorem. Two applications, one to a semilinear wave equation with delay and another one to a pseudoparabolic PDE in Mechanics, are included.

References

R.A. Adams, Sobolev spaces, Academic Press, Boston San Diego New York London Sidney Tokyo Toronto, 1978.

R.I. Becker, Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl. 82 (1981), 33–48.

H. Brill, A semilinear Sobolev evolution equation in a Banach space, J. Differential Equations 24 (1977), 412–425.

M.D. Burlică and D. Roşu, A class of nonlinear delay evolution equations with nonlocal initial conditions, Proc. Amer. Math. Soc. 142 (2014), 2445–2458.

O. Cârjă, M. Necula and I.I. Vrabie, Viability, Invariance and Applications, Elsevier Horth-Holland Mathematics Studies 207, 2007.

R.D. Driver, Ordinary and delay differential equations, Appl. Math. Sci. 20, Springer Verlag, New York Hedelberg Berlin, (1977).

N. Dunford and J.T. Schwartz, Linear Operators Part I: General Theory, Interscience Publishers, Inc. New York, 1958.

M. Frigon and D. O’Reagan, Existence results for initial value problems in Banach spaces, Differ. Equ. Dyn. Syst. 2(1994), 41-48.

A. Halanay, Differential Equations, Stability, Oscillations, Time Lags, Academic Press, New York and London 1966.

J. Hale, Functional differential equations, Applied Mathematical Sciences 3, Springer Verlag, 1971.

M. A. Krasnosel’skiĭ, Two remarks on the method of successive approximations, Uspehi Mat. Nauk 10 (1955), 123–127 (Russian).

E. Mitidieri and I.I. Vrabie, Existence for nonlinear functional differential equations, Hiroshima Math. J. 17 (1987), 627–649.

E. Mitidieri and I.I. Vrabie, A class of strongly nonlinear functional differential equations, Ann. Mat. Pura Appl. (4) CLI (1988), 125–147.

J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171–180.

I.I. Vrabie, $C_0$-semigroups and applications, North-Holland Publishing Co. Amsterdam, 2003.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-03-30

How to Cite

1.
VRABIE, Ioan I. A local existence theorem for a class of delay differential equations. Topological Methods in Nonlinear Analysis. Online. 30 March 2016. Vol. 48, no. 2, pp. 597 - 612. [Accessed 7 July 2025]. DOI 10.12775/TMNA.2016.023.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 48, No 2 (December 2016)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 2

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop