Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple solutions for an impulsive boundary value problems on the halfline via Morse theory
  • Home
  • /
  • Multiple solutions for an impulsive boundary value problems on the halfline via Morse theory
  1. Home /
  2. Archives /
  3. Vol 47, No 1 (March 2016) /
  4. Articles

Multiple solutions for an impulsive boundary value problems on the halfline via Morse theory

Authors

  • Karima Ait-Mahiout
  • Smail Djebali
  • Toufik Moussaoui

DOI:

https://doi.org/10.12775/TMNA.2016.003

Keywords

Impulsive boundary value problem, half-line, critical point, critical group, Morse theory

Abstract

In this paper, Morse theory is used to establish the existence of multiple solutions for an impulsive boundary value problem posed on the half-line.

References

A. Ambrosetti and Ph. Rabinowitz, Dual variational method in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Universitext. Springer, London, 2011. x+199 pp.

D.D. Bainov and P.S. Simeonov, Systems with Impulse Effect. Stability, theory and applications, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1989, 255 pp.

M. Briki, S. Djebali and T. Moussaoui, Solvability of an impulsive boundary value problem on the half-line via critical point theory, Bull. Iran. Math. Soc., to appear.

K.C. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math. 34 (1981), no. 5, 693–712.

K.C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and their Applications, 6. Birkh¨auser Boston, Inc., Boston, MA, 1993, x+312 pp.

K.C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics. Springer–Verlag, Berlin, 2005. x+439 pp.

H. Chen and J. Sun, An application of variational method to second-order impulsive differential equation on the half-line, Appl. Math. Comput. 217 (2010), no. 5, 1863–1869.

K. Deimling, Nonlinear Functional Analysis, Springer–Verlag, Berlin, 1985, xiv+450 pp.

D. Guo, Variational approach to a class of impulsive differential equations, Bound. Value Probl. 2014, doi:10.1186/1687-2770-2014-37, 10 pp.

G. Han and Z. Xu, Multiple solutions of some nonlinear fourth-order beam equations, Nonlinear Anal. 68 (2008), no. 12, 3646–3656.

S. Liu and S. Li, Existence of solutions for asymptotically ‘linear’ p-Laplacian equations, Bull. London Math. Soc. 36 (2004), no. 1, 81–87.

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer–Verlag, New York, 1989, xiv+277 pp.

D. Motreanu, V.V. Motreanu and N. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014, xii+459 pp.

J.J. Nieto and Z. Luo, Multiple positive solutions of the singular boundary value problem for second-order impulsive differential equations on the half-line, Bound. Value Probl. 2010, Art. ID 281908, 13 pp.

J.J. Nieto and D. O’Regan, Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl. 10 (2009), no. 2, 680–690.

K. Perera, R. Agarwal and D. O’Regan, Morse Theoretic Aspects of p-Laplacian Type Operators, Mathematical Surveys and Monographs, 161, American Mathematical Society, Providence, RI, 2010, xx+141 pp.

Ph. Rabinowitz, Variational Methods for Nonlinear Eigenvalue Problems, Eigenvalues of non-linear problems (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1974), pp. 139–195, Edizioni Cremonese, Rome, 1974.

C. L. Tang, Multiplicity of periodic solutions for second-order systems with a small forcing term, Nonlinear Anal. Ser. A: Theory Methods 38 (1999), no. 4, 471–479.

L. Yan, J. Liu and Z. Luo, Existence and multiplicity of solutions for second-order impulsive differential equations on the half-line, Adv. Difference Equ. 2013, 2013:293, 12 pp.

W. Zou and S. Li, Infinitely many solutions for Hamiltonian systems, J. Differential Equations 186 (2002), no. 1, 141–164.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-03-01

How to Cite

1.
AIT-MAHIOUT, Karima, DJEBALI, Smail & MOUSSAOUI, Toufik. Multiple solutions for an impulsive boundary value problems on the halfline via Morse theory. Topological Methods in Nonlinear Analysis [online]. 1 March 2016, T. 47, nr 1, s. 219–240. [accessed 1.4.2023]. DOI 10.12775/TMNA.2016.003.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 47, No 1 (March 2016)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 3

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop