Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiplicity of solutions of asymptotically linear Dirichlet problems associated to second order equations in R^{2n+1}
  • Home
  • /
  • Multiplicity of solutions of asymptotically linear Dirichlet problems associated to second order equations in R^{2n+1}
  1. Home /
  2. Archives /
  3. Vol 46, No 2 (December 2015) /
  4. Articles

Multiplicity of solutions of asymptotically linear Dirichlet problems associated to second order equations in R^{2n+1}

Authors

  • Alessandro Margheri
  • Carlota Rebelo

Keywords

Dirichlet problem, asymptotically linear, multiplicity of solutions, topological methods

Abstract

We present a result about multiplicity of solutions of asymptotically linear Dirichlet problems associated to second order equations in R^(2n+1), n \geq 1. Under an additional technical condition, the number of solutions obtained is given by the gap between the Morse indexes of the linearizations at zero and in nity. The additional condition is stable with respect to small perturbations of the vector eld. We show with a simple example that in some cases the size of the perturbation can be explicitly estimated.

References

H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Annali Scuola Sup. Pisa Cl. Sc. 7 (1980), 539–603.

H. Amann and E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math. 32 (1980), 149–189.

V. Benci, A New Approach to the Morse–Conley theory and some applications, Ann. Mat. Pura Appl. 48 (1991), 235–305.

A. Capietto, W. Dambrosio and D. Papini, Detecting multiplicity for systems of secondorder equations: an alternative approach, Adv. Differential Equations 10 (2005), 553–578.

F. Dalbono and C. Rebelo, Multiplicity of solutions of Dirichlet problems associated to second order equations in R2, Proc. Edinburgh Math. Soc. 52 (2009), 569–581.

Y. Dong, Index theory, nontrivial solutions, and asymptotically linear second-order Hamiltonian systems, J. Differential Equations 214 (2005), 233–255.

Q. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differential Equations 131 (1996), 1–19.

Q. Kong, H. Wu and A. Zettl, Dependence of the n-th Sturm–Liouville eigenvalue on the problem, J. Differential Equations 156 (1999), 328–354.

A. Margheri, C. Rebelo and P. Torres, On the use of Morse index and rotation numbers for multiplicity results of resonant BVPs, J. Math. Anal. Appl. 413 (2014), 660–667.

A. Margheri, C. Rebelo and F. Zanolin, Maslov index, Poincar´e–Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, J. Differential Equations 183 (2002), 342–367.

J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Appl. Math. Sci. 74, Springer–Verlag, New York, 1989

E. Zeidler, Nonlinear Functional Analysis and its Applications: I. Fixed-Point Theorems, Springer, 1998.

Vol 46, No 2 (December 2015)

Downloads

  • PREVIEW
  • Full text

Published

2015-12-01

How to Cite

1.
MARGHERI, Alessandro & REBELO, Carlota. Multiplicity of solutions of asymptotically linear Dirichlet problems associated to second order equations in R^{2n+1}. Topological Methods in Nonlinear Analysis [online]. 1 December 2015, T. 46, nr 2, s. 1107–1118. [accessed 30.3.2023].
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 46, No 2 (December 2015)

Section

Articles

Stats

Number of views and downloads: 150
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop