Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topological and measure properties of some self-similar sets
  • Home
  • /
  • Topological and measure properties of some self-similar sets
  1. Home /
  2. Archives /
  3. Vol 46, No 2 (December 2015) /
  4. Articles

Topological and measure properties of some self-similar sets

Authors

  • Taras Banakh
  • Artur Bartoszewicz
  • Emilia Szymonik
  • Małgorzata Filipczak

DOI:

https://doi.org/10.12775/TMNA.2015.075

Keywords

Self-similar set, multigeometric sequence, Cantorval

Abstract

Given a finite subset $\Sigma \subset \mathbbR$ and a positive real number $q<1$ we study topological and measure-theoretic properties of the
self-similar set $K(\Sigma ;q)=\bigg\\sum\limits_n=0^\infty
a_nq^n:(a_n)_n\in \omega \in \Sigma ^\omega \bigg\$, which is the
unique compact solution of the equation $K=\Sigma +qK$. The obtained results
are applied to studying partial sumsets $E(x)=\bigg\\sum\limits_n=0^\infty
x_n\varepsilon _n:(\varepsilon _n)_n\in \omega \in \0,1\^\omega %
\bigg\$ of multigeometric sequences $x=(x_n)_n\in \omega $. Such sets
were investigated by Ferens, Mor\'an, Jones and others. The aim of the
paper is to unify and deepen existing piecemeal results.

References

T. Banakh, A. Bartoszewicz, S. Głab and E. Szymonik, Algebraic and topological properties of some sets in `1, Colloq. Math. 129 (2012), 75–85.

M. Banakiewicz and F. Prus-Wisniowski, M-Cantorvals of Ferens type, in preparation.

A. Bartoszewicz, M. Filipczak and E. Szymonik, Multigeometric sequences and Cantorvals, Cent. Eur. J. Math. 12 (2014), 1000–1007.

M. Cörnyei, T. Jordan, M. Pollicott, D. Preiss and B. Solomyak, Positivemeasure self-similar sets without interior, Ergodic Theory Dynam. Systems. 26 (2006), 755–758.

C. Ferens, On the range of purely atomic probability measures, Studia Math. 77 (1984), 261–263.

J. A. Guthrie and J. E. Nymann, The topological structure of the set of subsums of an infinite series, Colloq. Math. 55 (1988), 323–327.

R. Jones, Achievement sets of sequences, Amer. Math. Monthly 118 (2011), 508–521.

S. Kakeya, On the partial sums of an infinite series, Tôhoku Sci. Rep. 3 (1914), 159–164.

P. Mendes and F. Oliveira, On the topological structure of the arithmetic sum of two Cantor sets, Nonlinearity 7 (1994), 329–343.

M. Morán, Fractal series, Mathematika 36 (1989), 334–348.

J. E. Nymann and R. A. Sáenz, The topological structure of the sets of P-sums of a sequence II, Publ. Math. Debrecen. 56 (2000), 77–85.

J. E. Nymann and R. A. Sáenz, On the paper of Guthrie and Nymann on subsums of infinite series, Colloq. Math. 83 (2000), 1–4.

A. Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122 (1994), 111–115.

B. Solomyak, On the random series Sumpmlambda^n (an Erdös problem), Ann. Math. 142 (1995), 611–625.

H. Steinhaus, Sur les distances des points dans les ensembles de mesure positive, Fund. Math. 1 (1920), 93–104.

A. D. Weinstein and B. E. Shapiro, On the structure of a set of ovdrlinealpha-representable numbers, Izv. Vyssh. Uchebn. Zaved. Matematika. 24 (1980), 8–11.

Vol 46, No 2 (December 2015)

Downloads

  • PREVIEW
  • FULL TEXT

Published

2015-12-01

How to Cite

1.
BANAKH, Taras, BARTOSZEWICZ, Artur, SZYMONIK, Emilia & FILIPCZAK, Małgorzata. Topological and measure properties of some self-similar sets. Topological Methods in Nonlinear Analysis [online]. 1 December 2015, T. 46, nr 2, s. 1013–1028. [accessed 3.2.2023]. DOI 10.12775/TMNA.2015.075.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 46, No 2 (December 2015)

Section

Articles

Stats

Number of views and downloads: 144
Number of citations: 15

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Newsletter
Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop