Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Dynamics of non-autonomous reaction-diffusion equations in locally uniform spaces
  • Home
  • /
  • Dynamics of non-autonomous reaction-diffusion equations in locally uniform spaces
  1. Home /
  2. Archives /
  3. Vol 46, No 2 (December 2015) /
  4. Articles

Dynamics of non-autonomous reaction-diffusion equations in locally uniform spaces

Authors

  • Gaocheng Yue
  • Chengkui Zhong

DOI:

https://doi.org/10.12775/TMNA.2015.073

Keywords

Reaction-diffusion equations, uniform attractors, locally uniform spaces

Abstract

In this paper, we first prove the well-posedness for the
non-autonomous reaction-diffusion equations on the entire space $\R^N$ in the
setting of locally uniform spaces with singular initial data. Then
we study the asymptotic behavior of solutions of such equation and
show the existence of
$(H^1,q_U(\R^N),H^1,q_\phi(\R^N))$-uniform(w.r.t.
$g\in\mcH_L^q_U(\R^N)(g_0)$) attractor
$\mcA_\mcH_L^q_U(\R^N)(g_0)$ with locally uniform external
forces being translation uniform bounded but not translation compact
in $L_b^p(\R;L^q_U(\R^N))$. We also obtain the uniform attracting property
in the stronger topology.

References

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equationds on unbounded domains, J. Differential Equations 83 (1990), 85-108.

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), volume 133 of Teubner-Texte Math., pages 9-126. Teubner, Stuttgart, 1993.

J. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodriguez-Bernal, Linear parabolic equations in locally uniform spaces, Math. Models Methods Appl. Sci. 14 (2004), 253-293.

J. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodriguez-Bernal, Asymptotic behavior and attractors for reaction diffusion equations in unbounded domain, Nonlinear Anal. 56 (2004), 515-554.

J. Arrieta, N. Moya and A. Rodriguez-Bernal, Asymptotic behavior of reaction-diffusion equations in weighted Sobolev spaces, (2009), submitted.

A. V. Babin and M. I. Vishik, Attractors of Evolutions, North-Holland, Amsterdam, 1992.

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), 221-243.

A. N. Carvalho and T. Dlotko, Partly dissipative systems in locally uniform spaces, Colloq. Math. 100 (2004), 221-242.

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for infinite-dimensional non-autonomous dynamical systems, Applied Mathematical Sciences 182, Springer-Verlag, 2012.

V. Chepyzhov and M. Vishik, Non-autonomous evolutionary equations with translation compact symbols and their attractors, C.R. Acad. Sci. Paris Ser. I 321 (1995), 153-158.

V. Chepyzhov and M. Vishik, Attractors for equations of mathematical physics, volume 49 of American Mathematical Society Colloquium Publications, AMS, Providence, RI, 2002.

V. Chepyzhov and M. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994), 279-333.

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000.

J. W. Cholewa and T. Dlotko, Cauchy problems in weighted Lebesgue spaces, Czechoslovak Math. J. 54 (2004), 991-1013.

J. Cholewa and A. Rodriguez-Bernal, Extremal equilibria for dissipative parabolic equations in locally uniform spaces, Math. Model Methods Appl Sci. 19 (2009), 1995-2037.

J. W. Cholewa and T. Dlotko, Extremal equilibria for monotone semigroups in ordered spaces with application to evolutionary equations, J. Differential Equations 249 (2010), 485-525.

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc. vol. 195. Amer. Math. Soc., Providence, RI, 2008.

M. A. Efendiev and S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in an bounded domain, Comm. Pure Appl. Math. 54 (2001), 625-688.

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc. Providence, RI, 1988.

A. Haraux, Systemes dynamiques dissipatifs et applications, Paris, Masson, 1991.

D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin, 1981.

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal. 58 (1975), 181-205.

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Leizioni Lincei/Cambridge Univ. Press, Cambridge/New York, 1991.

X. Li and S. Ruan, Attractors for non-autonomous parabolic problems with singular initial data, J. Differential Equations 251 (2011), 728-757.

S. S. Lu, H. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst. 13 (2005), 701-719.

Q. F. Ma, S. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J. 51 (2002), 1541-1559.

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domainsexistence and comparison, Nonlinearity 8 (1995), 743-768.

I. Moise, R. Rosa and X.Wang, Attractors for noncompact nonautonomous systems via energy equations, Discrete Contin. Dyn. Syst. 10 (2004), 473-496.

J. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press Texes in Applied Mathematics, Series, 2001.

A. Rodriguez-Bernal, Perturbation of analytic semigroups in scales of Banach spaces and applications to parabolic equations with low regularity data, SEMA Journal 53 (2011), 3-54.

C. Sun, D. Cao and J. Duan, Uniform attractors for non-autonomous wave equations with nonlinear damping, SIAM J. Applied Dynamical Systems 6 (2007), 293-318.

B. X. Wang, Attractors for reaction-diffusion equation in unbounded domains, Phys. D 128 (1999), 41-52.

S. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain and Kolmogorov's epsilon-entropy, Math. Nachr. 232 (2001), 129-179.

S. Zelik, The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dyn. Syst. 7 (2001), 593-641.

R. Temam, Infinite-dimensional systems in mechanics and physics, Springer-Verlag, New York, 1997.

M. H. Yang and C. Y. Sun, Dynamics of strongly damped wave equations in locally uniform spaces: Attractors and asymptotic regularity, Trans. Amer. Math. Soc. 361 (2009), 1069-1101.

C. K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm- to- weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations 223 (2006), 367-399.

Vol 46, No 2 (December 2015)

Downloads

  • PREVIEW
  • FULL TEXT

Published

2015-12-01

How to Cite

1.
YUE, Gaocheng & ZHONG, Chengkui. Dynamics of non-autonomous reaction-diffusion equations in locally uniform spaces. Topological Methods in Nonlinear Analysis [online]. 1 December 2015, T. 46, nr 2, s. 935–966. [accessed 1.4.2023]. DOI 10.12775/TMNA.2015.073.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 46, No 2 (December 2015)

Section

Articles

Stats

Number of views and downloads: 183
Number of citations: 3

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop