Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum
  • Home
  • /
  • Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum
  1. Home /
  2. Archives /
  3. Vol 46, No 2 (December 2015) /
  4. Articles

Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum

Authors

  • Jarosław Mederski

DOI:

https://doi.org/10.12775/TMNA.2015.067

Keywords

Schrodinger equation, ground state, variational methods, strongly indefinite functional, Nehari-Pankov manifold

Abstract

We study the following nonlinear Schrodinger equation
\begin{equation*}
\begin{cases}
  -\Delta u + V(x) u = g(x,u)  &  \hbox{for } x\in\R^N,\\
  u(x)\to 0  &  \hbox{as } |x|\to\infty,
\end{cases}
\end{equation*}
where $V\colon \R^N\to\R$ and $g\colon \R^N\times\R\to\R$ are periodic in $x$. We assume that $0$ is a right boundary point of the essential spectrum of $-\Delta+V$. The superlinear and subcritical term g satisfies a Nehari type monotonicity condition. We employ a Nehari manifold type technique in a strongly indefitnite setting and obtain the existence of a ground state solution. Moreover, we get infinitely many geometrically distinct solutions provided that $g$ is odd.

References

S. Alama and Y.Y. Li, (On ''multibump'' bound states for certain semilinear elliptic equations, Indiana Univ. Math. J. 41 (1992), no. 4, 983-1026.

C. O. Alves, M.A.S. Souto and M. Montenegro, (Existence of solution for two classes of elliptic problems in $R^N$ with zero mass, J. Differential Equations 252 (2012), 5735-5750.

M. Badiale, L. Pisani and S. Rolando, (Sum of wheighted Lebesgue spaces and nonlinear elliptic equations, Nonlinear Differential Equations Appl. 18 (2011), 369-405.

T. Bartsch and Y. Ding, (On a nonlinear Schrodinger equation with periodic potential, Math. Ann. 313 (1999), no. 1, 15-37.

T. Bartsch and J. Mederski, (Ground and bound state solutions of semilinear time-harmonic Maxwell equations in a bounded domain, Arch. rational Mech. Anal. 215 (1), (2015), 283-306.

H. Berestycki and P.L. Lions, (Nonlinear scalar field equations. I}. Existence of a ground state, Arch. Rational Mech. Anal. 82, (1983), 313-345.

B. Buffoni, L. Jeanjean and C.A. Stuart, (Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 (1993), no. 1, 179-186.

V. Coti-Zelati and P. Rabinowitz, (Homoclinic type solutions for a semilinear elliptic PDE} on $R^n$, Comm. Pure Appl. Math. 45 (1992), no. 10, 1217-1269.

Y. Ding and C. Lee, (Multiple solutions of Schrodinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations 222 (2006), no. 1, 137-163.

G. Evequoz and T. Weth, (Real solutions to the nonlinear Helmholtz equation with local nonlinearity, Arch. Rat. Mech. Anal. 211 (2014), 359-388.

D. Gilbarg and N.S. Trudinger, (Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 2001.

L. Jeanjean, (On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787-809.

W. Kryszewski and A. Szulkin, (Generalized linking theorem with an application to semilinear Schrodinger equation, Adv. Differential Equations 3 (1998), 441-472.

Y. Li, Z.-Q. Wang and J. Zeng, (Ground states of nonlinear Schr"odinger equations with potentials, Ann. Inst. H. Poincare Anal. Non Lineaire 23 (2006), no. 6, 829-837.

S. Liu, (On superlinear Schrodinger equations with periodic potential, Calc. Var. Partial Differential Equations 45 (2012), no. 1-2, 1-9.

Z. Liu and Z.-Q. Wang, (On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud. 4 (2004), 561-572.

O. H. Miyagaki and M. A. S. Souto, (Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations 245 (2008), no. 12, 3628-3638.

A. Pankov, (Periodic nonlinear Schrodinger equation with application to photonic crystals, Milan J. Math. 73 (2005), 259-287.

A. Pankov, (Lecture Notes on Schrodinger Equations, Nova Science Pub Inc. 2008.

P. Rabinowitz, (On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys. 43 (1992), 270-291.

M. Reed and B. Simon, (Methods of Modern Mathematical Physics, Analysis of Operators, Vol. IV, Academic Press, New York, 1978.

M. Struwe, Variational Methods, Springer 2008.

M. Schechter and W. Zou, Weak linking theorems and Schrodinger equations with critical Sobolev exponent, ESAIM Control Optim. Calc. Var. 9 (2003), 601-619.

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal. 257 (2009), no. 12, 3802-3822.

A. Szulkin and T. Weth, The method of Nehari manifold. Handbook of nonconvex analysis and applications, Handbook of Nonconvex Analysis and Applications, Int. Press, Somerville, 2010, 597-632.

C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrodinger equation, Comm. Partial Differential Equations 21 (1996), 1431-1449.

M. Willem, Minimax Theorems, Birkhauser Verlag, 1996.

M. Willem and W. Zou, On a Schrodinger equation with periodic potential and spectrum point zero, Indiana Univ. Math. J. 52 (2003), no. 1, 109-132.

M. Yang, W. Chen and Y. Ding, (Solutions for periodic Schrodinger equation with spectrum zero and general superlinear nonlinearities, J. Math. Anal. Appl. 364 (2010), no. 2, 404-413.

Vol 46, No 2 (December 2015)

Downloads

  • PREVIEW
  • FULL TEXT

Published

2015-12-01

How to Cite

1.
MEDERSKI, Jarosław. Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum. Topological Methods in Nonlinear Analysis. Online. 1 December 2015. Vol. 46, no. 2, pp. 755 - 772. [Accessed 4 July 2025]. DOI 10.12775/TMNA.2015.067.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 46, No 2 (December 2015)

Section

Articles

Stats

Number of views and downloads: 437
Number of citations: 15

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop