Coexistence states of diffusive predator-prey systems with preys competition and predator saturation
DOI:
https://doi.org/10.12775/TMNA.2015.025Keywords
Coexistence, Predator-prey model, fix point index, extinction, permanence, global attractor, stabilityAbstract
In this paper, we study the existence, stability, permanence, and global attractor of coexistence states (i.e. the densities of all the species are positive in $\Omega$) to the following diffusive two-competing-prey and one-predator systems with preys competition and predator saturation:
-\Delta u=u\bigg(a_1-u-b_{12}v-\frac{c_1w}{(1+\alpha_1u)(1+\beta_1w)}\bigg) & {\rm in}\ \Omega,
-\Delta v=v\bigg(a_2-b_{21}u-v-\frac{c_2w}{(1+\alpha_2v)(1+\beta_2w)}\bigg) &{\rm in}\ \Omega,
-\Delta w=w\bigg(\frac{e_1u}{(1+\alpha_1u)(1+\beta_1w)}+\frac{e_2v}{(1+\alpha_2v)(1+\beta_2w)}-d\bigg) &{\rm in}\ \Omega,
k_1\partial_\nu u+u=k_2\partial_\nu v+v=k_3\partial_\nu w+w=0 & {\rm on}\ \partial\Omega,
where $k_i\geq 0$ $(i=1,2,3)$ and all the other parameters are positive, $\nu$ is the outward unit rector on $\partial\Omega$, $u$ and $v$ are densities of the competing preys, $w$ is the density of the predator.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 0
Number of citations: 0