Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Measurable patterns, necklaces and sets indiscernible by measure
  • Home
  • /
  • Measurable patterns, necklaces and sets indiscernible by measure
  1. Home /
  2. Archives /
  3. Vol 45, No 1 (March 2015) /
  4. Articles

Measurable patterns, necklaces and sets indiscernible by measure

Authors

  • Rade Živaljevic SASA, Mathematical Institute
  • Siniša Vresćica University of Belgrade, Faculty of Mathematics

DOI:

https://doi.org/10.12775/TMNA.2015.002

Keywords

Equipartitions of measures, fair division, pattern avoidance, computational topology

Abstract

In some recent papers the classical `splitting necklace theorem' is linked in an interesting way with a geometric `pattern avoidance problem', see Alon et al. (Proc. Amer. Math. Soc., 2009), Grytczuk and Lubawski (arXiv:1209.1809 [math.CO]), and Laso\'{n} (arXiv:1304.5390v1 [math.CO]). Following these authors we explore the topological constraints on the existence of a (relaxed) measurable coloring of $\mathbb{R}^d$ such that any two distinct, non-degenerate cubes (parallelepipeds) are measure discernible. For example, motivated by a conjecture of Laso\'{n}, we show that for every collection $\mu_1,\ldots,\mu_{2d-1}$ of $2d-1$ continuous, signed locally finite measures on $\mathbb{R}^d$, there exist two nontrivial axis-aligned $d$-dimensional cuboids (rectangular parallelepipeds) $C_1$ and $C_2$ such that $\mu_i(C_1)=\mu_i(C_2)$ for each $i\in\{1,\ldots,2d-1\}$. We also show by examples that the bound $2d-1$ cannot be improved in general. These results are steps in the direction of studying general topological obstructions for the existence of non-repetitive colorings of measurable spaces.
Vol 45, No 1 (March 2015)

Downloads

  • Full Text

Published

2015-03-01

How to Cite

1.
ŽIVALJEVIC, Rade & VRESĆICA, Siniša. Measurable patterns, necklaces and sets indiscernible by measure. Topological Methods in Nonlinear Analysis [online]. 1 March 2015, T. 45, nr 1, s. 39–54. [accessed 9.2.2023]. DOI 10.12775/TMNA.2015.002.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 45, No 1 (March 2015)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Newsletter
Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop