Existence principle for BVPs with state-dependent impulses
Keywords
Impulsive differential equation, state-dependent impulses, Sturm-Liouville problem, second order ODE, transversality conditionsAbstract
The paper provides an existence principle for the Sturm-Liouville boundary value problem with state-dependent impulses \begin{gather} z''(t) = f(t,z(t),z'(t)) \quad \text{for a.e. } t \in [0,T] \subset \re, \nonumber\\ z(0) - az'(0) = c_1, \quad z(T) + bz'(T) = c_2, \nonumber\\ z(\x{\tau}{i}+) - z(\x{\tau}{i}) = J_i(\x{\tau}{i},z(\x{\tau}{i})), \quad z'(\x{\tau}{i}+) - z'(\x{\tau}{i}-) = \m_i(\x{\tau}{i},z(\x{\tau}{i})), \nonumber \end{gather} where the points $\x{\tau}{1}, \ldots, \x{\tau}{p}$ depend on $z$ through the equations \begin{equation*} \x{\tau}{i} = \gamma(z(\x{\tau}{i})), \quad i = 1,\ldots,p, \ p \in \en. \end{equation*} Provided $a$, $b \in [0,\infty)$, $c_j \in \re$, $j = 1,2$, and the data functions $f$, $J_i$, $\m_i$, $i=1,\ldots,p$, are bounded, transversality conditions for barriers $\gamma_i$, $i = 1,\ldots,p$, which yield the solvability of the problem, are delivered. An application to the problem with unbounded data functions is demonstrated.Downloads
Published
2016-04-12
How to Cite
1.
RACHŮNKOVÁ, Irena and TOMEČEK, Jan. Existence principle for BVPs with state-dependent impulses. Topological Methods in Nonlinear Analysis. Online. 12 April 2016. Vol. 44, no. 2, pp. 349 - 368. [Accessed 2 December 2024].
Issue
Section
Articles
Stats
Number of views and downloads: 0
Number of citations: 0