Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Attractors in hyperspace
  • Home
  • /
  • Attractors in hyperspace
  1. Home /
  2. Archives /
  3. Vol 44, No 1 (September 2014) /
  4. Articles

Attractors in hyperspace

Authors

  • Lev Kapitanski
  • Sanja Živanović Gonzalez

Keywords

Hyperspace, global attractors, dynamical systems, iterated functions systems

Abstract

Given a map $\Phi$ defined on bounded subsets of the (base) metric space $X$ and with bounded sets as its values, one can follow the orbits $A$, $\Phi(A)$, $\Phi^2(A)$, $\ldots$, of nonempty, closed, and bounded sets $A$ in $X$. This is the system $(\Phi, X)$. On the other hand, the same orbits can be viewed as trajectories of points in the hyperspace $X^\sharp$ of nonempty, closed, and bounded subsets of $X$. This is the system $(\Phi, X^\sharp)$. We study the existence and properties of global attractors for both $(\Phi, X)$ and $(\Phi, X^\sharp)$. We give very basic conditions on $\Phi$, stated at the level of the base space $X$, that are necessary and sufficient for the existence of a global attractor for $(\Phi, X)$. Continuity is not among those conditions, but if $\Phi$ is continuous in a certain sense then the attractor and the $\omega$-limit sets are $\Phi$-invariant. If $(\Phi, X)$ has a global attractor, then $(\Phi, X^\sharp)$ has a global attractor as well. Every point of the global attractor of $(\Phi, X^\sharp)$ is a compact set in $X$, and the union of all the points of that attractor is the global attractor of $(\Phi, X)$.

Downloads

  • FULL TEXT

Published

2016-04-12

How to Cite

1.
KAPITANSKI, Lev & ŽIVANOVIĆ GONZALEZ, Sanja. Attractors in hyperspace. Topological Methods in Nonlinear Analysis [online]. 12 April 2016, T. 44, nr 1, s. 199–227. [accessed 25.3.2023].
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 44, No 1 (September 2014)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop