Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The effect of diffusion on critical quasilinear elliptic problems
  • Home
  • /
  • The effect of diffusion on critical quasilinear elliptic problems
  1. Home /
  2. Archives /
  3. Vol 43, No 2 (June 2014) /
  4. Articles

The effect of diffusion on critical quasilinear elliptic problems

Authors

  • Renato José de Moura
  • Marcos Montenegro

Keywords

Non-uniformly elliptic operators, critical Sobolev exponent, best constant, Hardy-Sobolev inequality

Abstract

We discuss the role of the diffusion coefficient $a(x)$ on the existence of a positive solution for the quasilinear elliptic problem involving critical exponent $$ \cases - \text{div}( a(x) |\nabla u|^{p-2} \nabla u) = u^{p^* - 1} + \lambda u^{p-1} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega,\ \endcases $$ where $\Omega$ is a smooth bounded domain in $\R^n$, $n \geq 2$, $1 < p < n$, $p^* = np/(n-p)$ is the critical exponent from the viewpoint of Sobolev embedding, $\lambda$ is a real parameter and $a\colon \overline{\Omega} \rightarrow \R$ is a positive continuous function. We prove that if the function $a(x)$ has an interior global minimum point $x_0$ of order $\sigma$, then the range of values $\lambda$ for which the problem above has a positive solution relies strongly on $\sigma$. We discover in particular that the picture changes drastically from $\sigma > p$ to $\sigma \leq p$. Some sharp answers are also provided.

Downloads

  • FULL TEXT

Published

2016-04-12

How to Cite

1.
DE MOURA, Renato José and MONTENEGRO, Marcos. The effect of diffusion on critical quasilinear elliptic problems. Topological Methods in Nonlinear Analysis. Online. 12 April 2016. Vol. 43, no. 2, pp. 517 - 534. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 43, No 2 (June 2014)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop