Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Central points and measures and dense subsets of compact metric spaces
  • Home
  • /
  • Central points and measures and dense subsets of compact metric spaces
  1. Home /
  2. Archives /
  3. Vol 40, No 1 (September 2012) /
  4. Articles

Central points and measures and dense subsets of compact metric spaces

Authors

  • Piotr Niemiec

Keywords

Chebyshev center, convex set, common fixed point, Kantorovich metric, pointed metric space, distinguishing a point

Abstract

For every nonempty compact convex subset $K$ of a normed linear space a (unique) point $c_K \in K$, called the generalized Chebyshev center, is distinguished. It is shown that $c_K$ is a common fixed point for the isometry group of the metric space $K$. With use of the generalized Chebyshev centers, the central measure $\mu_X$ of an arbitrary compact metric space $X$ is defined. For a large class of compact metric spaces, including the interval $[0,1]$ and all compact metric groups, another `central' measure is distinguished, which turns out to coincide with the Lebesgue measure and the Haar one for the interval and a compact metric group, respectively. An idea of distinguishing infinitely many points forming a dense subset of an arbitrary compact metric space is also presented.

Downloads

  • FULL TEXT

Published

2012-04-23

How to Cite

1.
NIEMIEC, Piotr. Central points and measures and dense subsets of compact metric spaces. Topological Methods in Nonlinear Analysis. Online. 23 April 2012. Vol. 40, no. 1, pp. 161 - 180. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 40, No 1 (September 2012)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop