Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Structure of the fixed-point set of mappings with lipschitzian iterates
  • Strona domowa
  • /
  • Structure of the fixed-point set of mappings with lipschitzian iterates
  1. Strona domowa /
  2. Archiwum /
  3. Vol 36, No 2 (December 2010) /
  4. Articles

Structure of the fixed-point set of mappings with lipschitzian iterates

Autor

  • Jarosław Górnicki

Słowa kluczowe

Retraction, asymptotic center, fixed point, uniformly convex Banach space, strongly ergodic matrix

Abstrakt

We prove, by asymptotic center techniques and some inequalities in Banach spaces, that if $E$ is $p$-uniformly convex Banach space, $C$ is a nonempty bounded closed convex subset of $E$, and $T\colon C\rightarrow C$ has lipschitzian iterates (with some restrictions), then the set of fixed-points is not only connected but even a retract of $C$. The results presented in this paper improve and extend some results in [J. Górnicki, < i> A remark on fixed point theorems for lipschitzian mappings< /i> , J. Math. Anal. Appl. < b> 183< /b> (1994), 495–508], [J. Górnicki, < i> The methods of Hilbert spaces and structure of the fixed-point set of lipschitzian mapping< /i> , Fixed Point Theory and Applications, Hindawi Publ. Corporation, 2009, Article ID 586487].

Pobrania

  • FULL TEXT (English)

Opublikowane

2010-04-23

Jak cytować

1.
GÓRNICKI, Jarosław. Structure of the fixed-point set of mappings with lipschitzian iterates. Topological Methods in Nonlinear Analysis [online]. 23 kwiecień 2010, T. 36, nr 2, s. 381–393. [udostępniono 7.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 36, No 2 (December 2010)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa