Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Filippov-Ważewski theorems and structure of solution sets for first order impulsive semilinear functional differential inclusions
  • Home
  • /
  • Filippov-Ważewski theorems and structure of solution sets for first order impulsive semilinear functional differential inclusions
  1. Home /
  2. Archives /
  3. Vol 32, No 2 (December 2008) /
  4. Articles

Filippov-Ważewski theorems and structure of solution sets for first order impulsive semilinear functional differential inclusions

Authors

  • Smaïl Djebali
  • Lech Górniewicz
  • Abdelghani Ouahab

Keywords

Impulsive functional differential inclusions, mild solution, Filippov's theorem, relaxation, solution set, compactness, AR, $R_\delta$, contractibility, acyclicity

Abstract

In this paper, we first present an impulsive version of Filippov's Theorem for first-order semilinear functional differential inclusions of the form: $$ \cases (y'-Ay) \in F(t,y_t) &\text{a.e. } t\in J\setminus \{t_{1},\ldots,t_{m}\}, \\ y(t^+_{k})-y(t^-_k)=I_{k}(y(t_{k}^{-})) &\text{for } k=1,\ldots,m, \\ y(t)=\phi(t) &\text{for } t\in[-r,0], \endcases $$ where $J=[0,b]$, $A$ is the infinitesimal generator of a $C_0$-semigroup on a separable Banach space $E$ and $F$ is a set-valued map. The functions $I_k$ characterize the jump of the solutions at impulse points $t_k$ ($k=1,\ldots,m$). Then the convexified problem is considered and a Filippov-Wa{\plr ż}ewski result is proved. Further to several existence results, the topological structure of solution sets -- closeness and compactness -- is also investigated. Some results from topological fixed point theory together with notions of measure on noncompactness are used. Finally, some geometric properties of solution sets, AR, $R_\delta$-contractibility and acyclicity, corresponding to Aronszajn-Browder-Gupta type results, are obtained.

Downloads

  • FULL TEXT

Published

2008-12-01

How to Cite

1.
DJEBALI, Smaïl, GÓRNIEWICZ, Lech and OUAHAB, Abdelghani. Filippov-Ważewski theorems and structure of solution sets for first order impulsive semilinear functional differential inclusions. Topological Methods in Nonlinear Analysis. Online. 1 December 2008. Vol. 32, no. 2, pp. 261 - 312. [Accessed 12 November 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 32, No 2 (December 2008)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop