Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Spectral properties and nodal solutions for second-order, $m$-point, $p$-Laplacian boundary value problems
  • Home
  • /
  • Spectral properties and nodal solutions for second-order, $m$-point, $p$-Laplacian boundary value problems
  1. Home /
  2. Archives /
  3. Vol 32, No 1 (September 2008) /
  4. Articles

Spectral properties and nodal solutions for second-order, $m$-point, $p$-Laplacian boundary value problems

Authors

  • Niall Dodds
  • Bryan P. Rynne

Keywords

$m$-point, $p$-Laplacian, spectral properties, nodal solutions

Abstract

We consider the $m$-point boundary value problem consisting of the equation $$ -\phi_p (u')'=f(u), \quad \text{on $(0,1)$},\tag 1 $$ together with the boundary conditions $$ u(0) = 0,\quad u(1) = \sum^{m-2}_{i=1}\alpha_i u(\eta_i) ,\tag 2 $$ where $p> 1$, $\phi_p(s) := |s|^{p-1} \text{\rm sgn} s$, $s \in {\mathbb R}$, $m \ge 3$, $\alpha_i , \eta_i \in (0,1)$, for $i=1,\dots,m-2$, and $\sum^{m-2}_{i=1} \alpha_i < 1$. We assume that the function $f \colon {\mathbb R} \to{\mathbb R}$ is continuous, satisfies $sf(s) > 0$ for $s \in {\mathbb R} \setminus \{0\}$, and that $f_0 := \lim_{\xi \rightarrow 0}{f(\xi)}/{\phi_p(\xi)} > 0$. %(we assume that the limit exists and is finite). Closely related to the problem (1), (2), is the spectral problem consisting of the equation $$ -\phi_p (u')' = \la \phi_p(u) , \tag 3 $$ together with the boundary conditions (2). It will be shown that the spectral properties of (2), (3), are similar to those of the standard Sturm-Liouville problem with separated (2-point) boundary conditions (with a minor modification to deal with the multi-point boundary condition). The topological degree of a related operator is also obtained. These spectral and degree theoretic results are then used to prove a Rabinowitz-type global bifurcation theorem for a bifurcation problem related to the problem (1), (2). Finally, we use the global bifurcation theorem to obtain nodal solutions %(that is, sign-changing solutions with a specified number of zeros) of (1), (2), under various conditions on the asymptotic behaviour of $f$.

Downloads

  • FULL TEXT

Published

2008-09-01

How to Cite

1.
DODDS, Niall & RYNNE, Bryan P. Spectral properties and nodal solutions for second-order, $m$-point, $p$-Laplacian boundary value problems. Topological Methods in Nonlinear Analysis [online]. 1 September 2008, T. 32, nr 1, s. 21–40. [accessed 1.2.2023].
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 32, No 1 (September 2008)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Newsletter
Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop