Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A deformation lemma with an application to a mean field equation
  • Home
  • /
  • A deformation lemma with an application to a mean field equation
  1. Home /
  2. Archives /
  3. Vol 30, No 1 (September 2007) /
  4. Articles

A deformation lemma with an application to a mean field equation

Authors

  • Marcello Lucia

Keywords

Deformation lemma, Palais-Smale condition, nonlinear PDE, mean field equation

Abstract

Given a Hilbert space $( {\mathcal H}, \langle \cdot,\cdot\rangle)$, $\Lambda$ an interval of $\mathbb R$ and $K \in C^{1,1} ({\mathcal H}, {\mathbb R})$ whose gradient is a compact mapping, we consider a family of functionals of the type: $$ I(\lambda, u) = \frac{1}{2} \langle u , u\rangle - \lambda K(u), \quad (\lambda,u) \in \Lambda \times {\mathcal H}. $$ Though the Palais-Smale condition may fail under just these assumptions, we present a deformation lemma to detect critical points. As a corollary, if $I(\overline \lambda,\cdot)$ has a ``mountain pass geometry'' for some $\overline \lambda \in \Lambda$, we deduce the existence of a sequence $\lambda_n \to \overline \lambda$ for which each $I(\lambda_n,\cdot)$ has a critical point. To illustrate such results, we consider the problem: $$ - \Delta u = \lambda \bigg( \frac{e^u}{\int_{\Omega} e^u } - \frac{T}{|\Omega|} \bigg), \quad u \in H_0^1 (\Omega), $$ where $\Omega \subset \subset {\mathbb R}^2$ and $T$ belongs to the dual $H^{-1}$ of $H^1_0 (\Omega)$. It is known that the associated energy functional does not satisfy the Palais-Smale condition. Nevertheless, we can prove existence of multiple solutions under some smallness condition on $\| T-1 \|_{H^{-1}}$, where $1$ denotes the constant function identically equal to $1$ in the domain.

Downloads

  • FULL TEXT

Published

2007-09-01

How to Cite

1.
LUCIA, Marcello. A deformation lemma with an application to a mean field equation. Topological Methods in Nonlinear Analysis [online]. 1 September 2007, T. 30, nr 1, s. 113–138. [accessed 1.4.2023].
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 30, No 1 (September 2007)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop