Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence, multiplicity and concentration of positive solutions for a class of quasilinear problems
  • Home
  • /
  • Existence, multiplicity and concentration of positive solutions for a class of quasilinear problems
  1. Home /
  2. Archives /
  3. Vol 29, No 2 (June 2007) /
  4. Articles

Existence, multiplicity and concentration of positive solutions for a class of quasilinear problems

Authors

  • Claudianor O. Alves
  • Yanheng Ding

Keywords

Variational methods, critical exponent, elliptic equation

Abstract

Using variational methods we establish existence and multiplicity of positive solutions for the following class of quasilinear problems $$ -\Delta_{p}u + \lambda V(x)|u|^{p-2}u= \mu |u|^{p-2}u+|u|^{p^{*}-2}u \quad\text{in } {\mathbb R}^{N} $$ where $\Delta_{p}u$ is the $p$-Laplacian operator, $2 \leq p < N$, $p^{*}={pN}/(N-p)$, $\lambda, \mu \in (0, \infty)$ and $V\colon {\mathbb R}^{N} \rightarrow {\mathbb R}$ is a continuous function verifying some hypothesis.

Downloads

  • FULL TEXT

Published

2007-06-01

How to Cite

1.
ALVES, Claudianor O. and DING, Yanheng. Existence, multiplicity and concentration of positive solutions for a class of quasilinear problems. Topological Methods in Nonlinear Analysis. Online. 1 June 2007. Vol. 29, no. 2, pp. 265 - 278. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 29, No 2 (June 2007)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop