Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple solutions for asymptotically linear resonant elliptic problems
  • Home
  • /
  • Multiple solutions for asymptotically linear resonant elliptic problems
  1. Home /
  2. Archives /
  3. Vol 21, No 2 (June 2003) /
  4. Articles

Multiple solutions for asymptotically linear resonant elliptic problems

Authors

  • Francisco Odair de Paiva

Keywords

Cerami condition, multiplicity of solutions, double resonance, sign changing solution

Abstract

In this paper we establish the existence of multiple solutions for the semilinear elliptic problem $$\alignedat 2 -\Delta u&=g(x,u) &\quad&\text{in } \Omega, \\ u&=0 &\quad&\text{on } \partial\Omega, \endalignedat \tag 1.1 $$ where $\Omega \subset {\mathbb R}^N$ is a bounded domain with smooth boundary $\partial \Omega$, a function $g\colon\Omega\times{\mathbb R}\to {\mathbb R}$ is of class $C^1$ such that $g(x,0)=0$ and which is asymptotically linear at infinity. We considered both cases, resonant and nonresonant. We use critical groups to distinguish the critical points.

Downloads

  • FULL TEXT

Published

2003-06-01

How to Cite

1.
DE PAIVA, Francisco Odair. Multiple solutions for asymptotically linear resonant elliptic problems. Topological Methods in Nonlinear Analysis. Online. 1 June 2003. Vol. 21, no. 2, pp. 227 - 247. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 21, No 2 (June 2003)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop