Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Lusternik-Schnirelmann theory for fixed points of maps
  • Home
  • /
  • Lusternik-Schnirelmann theory for fixed points of maps
  1. Home /
  2. Archives /
  3. Vol 21, No 1 (March 2003) /
  4. Articles

Lusternik-Schnirelmann theory for fixed points of maps

Authors

  • Yuli B. Rudyak
  • Felix Schlenk

Keywords

Fixed point theory, Lusternik-Schnirelman theory, Palais-Smale condition

Abstract

We use the ideas of Lusternik-Schnirelmann theory to describe the set of fixed points of certain homotopy equivalences of a general space. In fact, we extend Lusternik-Schnirelmann theory to pairs $(\varphi, f)$, where $\varphi$ is a homotopy equivalence of a topological space $X$ and where $f \colon X \rightarrow \mathbb R$ is a continuous function satisfying $f(\varphi(x)) < f(x)$ unless $\varphi (x) = x$; in addition, the pair $(\varphi, f)$ is supposed to satisfy a discrete analogue of the Palais-Smale condition. In order to estimate the number of fixed points of $\varphi$ in a subset of $X$, we consider different relative categories. Moreover, the theory is carried out in an equivariant setting.

Downloads

  • FULL TEXT

Published

2003-03-01

How to Cite

1.
RUDYAK, Yuli B. & SCHLENK, Felix. Lusternik-Schnirelmann theory for fixed points of maps. Topological Methods in Nonlinear Analysis [online]. 1 March 2003, T. 21, nr 1, s. 171–194. [accessed 25.3.2023].
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 21, No 1 (March 2003)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop