Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Zeros of closed 1-forms, homoclinic orbits and Lusternik-Schnirelman theory
  • Home
  • /
  • Zeros of closed 1-forms, homoclinic orbits and Lusternik-Schnirelman theory
  1. Home /
  2. Archives /
  3. Vol 19, No 1 (March 2002) /
  4. Articles

Zeros of closed 1-forms, homoclinic orbits and Lusternik-Schnirelman theory

Authors

  • Michael Farber

Keywords

Morse theory, Lusternik-Schnirelman theory, closed 1-form, Massey products, homoclinic orbits

Abstract

In this paper we study topological lower bounds on the number of zeros of closed $1$-forms without Morse type assumptions. We prove that one may always find a representing closed $1$-form having at most one zero. We introduce and study a generalization ${\rm cat}(X,\xi)$ of the notion of the Lusternik-Schnirelman category, depending on a topological space $X$ and a $1$-dimensional real cohomology class $\xi\in H^1(X;\mathbb R)$. We prove that any closed $1$-form $\omega$ in class $\xi$ has at least ${\rm cat}(X,\xi)$ zeros assuming that $\omega$ admits a gradient-like vector field with no homoclinic cycles. We show that the number ${\rm cat}(X,\xi)$ can be estimated from below in terms of the cup-products and higher Massey products. < p> This paper corrects some my statements made in [< i> Lusternik–Schnirelman theory for closed $1$-forms< /i> , Comment. Math. Helv. < b> 75< /b> (2000), 156–170] and [< i> Topology of closed $1$-forms and their critical points, Topology < b> 40< /b> (2001), 235–258].< /p>

Downloads

  • FULL TEXT

Published

2002-03-01

How to Cite

1.
FARBER, Michael. Zeros of closed 1-forms, homoclinic orbits and Lusternik-Schnirelman theory. Topological Methods in Nonlinear Analysis. Online. 1 March 2002. Vol. 19, no. 1, pp. 123 - 152. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 19, No 1 (March 2002)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop