Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

An eigenvalue problem for a quasilinear elliptic field equation on $\mathbb R^n$
  • Home
  • /
  • An eigenvalue problem for a quasilinear elliptic field equation on $\mathbb R^n$
  1. Home /
  2. Archives /
  3. Vol 17, No 2 (June 2001) /
  4. Articles

An eigenvalue problem for a quasilinear elliptic field equation on $\mathbb R^n$

Authors

  • Vieri Benci
  • Anna Maria Micheletti
  • Daniela Visetti

Keywords

Nonlinear systems, nonlinear Schrödinger equations, nonlinear eigenvalue problems

Abstract

We study the field equation $$-\Delta u+V(x)u+\varepsilon^r(-\Delta_pu+W'(u))=\mu u$$ on $\mathbb R^n$, with $\varepsilon$ positive parameter. The function $W$ is singular in a point and so the configurations are characterized by a topological invariant: the topological charge. By a min-max method, for $\varepsilon$ sufficiently small, there exists a finite number of solutions $(\mu(\varepsilon),u(\varepsilon))$ of the eigenvalue problem for any given charge $q\in{\mathbb Z}\setminus\{0\}$.

Downloads

  • FULL TEXT

Published

2001-06-01

How to Cite

1.
BENCI, Vieri, MICHELETTI, Anna Maria and VISETTI, Daniela. An eigenvalue problem for a quasilinear elliptic field equation on $\mathbb R^n$. Topological Methods in Nonlinear Analysis. Online. 1 June 2001. Vol. 17, no. 2, pp. 191 - 211. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 17, No 2 (June 2001)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop