Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Sign-changing solutions for a critical exponential problem with competing potentials
  • Home
  • /
  • Sign-changing solutions for a critical exponential problem with competing potentials
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Sign-changing solutions for a critical exponential problem with competing potentials

Authors

  • Willy Barahona https://orcid.org/0000-0002-1254-7471
  • Eugenio Cabanillas Lapa https://orcid.org/0000-0002-8941-4394
  • Giovany M. Figueiredo https://orcid.org/0000-0003-1697-1592

DOI:

https://doi.org/10.12775/TMNA.2025.025

Keywords

Equation in divergent form, Del Pino and Felmer's penalization method

Abstract

We establish the existence, concentration, and exponential decay of a family of sign-changing solutions for a problem involving exponential critical growth, described by the equation: $$ \begin{cases} -\epsilon^{2}\mbox{div}\left(a(x)\nabla u\right)+V(x)u =K(x) f(u) & \mbox{in $\mathbb{R}^2,$}\\ u \in H^{1}\big(\mathbb{R}^{2}\big). \end{cases} \leqno{(\rom{P}_{\epsilon})} $$ To address the lack of compactness and the competition between the potentials, we employ variational methods alongside a suitable truncation of the nonlinearity.

References

C.O. Alves, Existence and multiplicity of positive solutions for a class of equations, Adv. Nonlinear Stud. 5 (2005), 73–86.

C.O. Alves and G.M. Figueiredo, Multiplicity and concentration of positive solutions for a class of quasilinear problems, Adv. Nonlinear Stud. 11 (2011), 265–295.

C.O. Alves and D.S. Pereira, Multiplicity of multi-bump type nodal solutions for a class of elliptic problems with exponential critical growth in R2 , Proc. Edinb. Math. Soc. (2) 60 (2017), no. 2, 273–297.

C.O. Alves and S.H.M. Soares, On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations, J. Math. Anal. Appl. 296 (2004), 563–577.

C.O. Alves and S.H.M. Soares, Nodal solutions for singularly perturbed equations with critical exponential growth, J. Differential Equations 234 (2007), no. 2, 464–484.

C.O. Alves and M. Souto, Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains, Z. Angew. Math. Phys. (to appear).

S. Barile and G.M. Figueiredo, Existence of least energy positive, negative and nodal solutions for a class of p& q-problems with potentials vanishing at infinity, J. Math. Anal. Appl. 427 (2015), 1205–1233.

T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 259–281.

D.M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in R2 , Comm. Partial Differential Equations 17 (1992), 407–435.

A. Castro, J. Cossio and J. Neuberger, A sign-changing solution for a super linear Dirichlet problem, Rocky Mountain J. Math. 27 (1997), no. 4, 1041–1053.

S. Cingolani, Semiclassical stationary states of Nonlinear Schrödinger equations with an external magnetic field, J. Differential Equations 188 (2003), 52–79.

S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differential Equations 160 (200), 118–138.

G.S.A. Costa and G.M. Figueiredo, Existence and concentration of nodal solutions for a subcritical p& q equation, Commun. Pure Appl. Anal. 19 (2020), no. 11, 5077–5095.

G.S.A. Costa and G.M. Figueiredo, On a critical exponential p& N equation type: existence and concentration of changing solutions, Bull. Braz. Math. Soc. (N.S.) 53 (2022), no. 1, 243–280.

M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), 121–137.

E. Di Benedetto, C 1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1985), 827–850.

J.M.B. do Ó, N -Laplacian equations in RN with critical growth, Abstr. Appl. Anal. 2 (1997), 301–315.

G.M. Figueiredo and M.F. Furtado, Positive solutions for some quasilinear equations with critical and supercritical growth, Nonlinear Anal. 66 (2007), 1600–1616.

G.M. Figueiredo and F.B.M. Nunes, Existence of a least energy nodal solution for a class of quasilinear elliptic equations with exponential growth, Funkc. Ekv. 64 (2021), 293–322.

G.M. Figueiredo and S.M.A. Salirrosas, Multiplicity of semiclassical states solutions for a weakly coupled Schrödinger system with critical growth in divergent form, Potential Anal. 59 (2023), 237–261.

J. Liu, Y. Wang and Z.-Q. Wang, Solutions for quasilinear equations via the Nehari method, Comm. Partial Differential Equations 29 (2004),no. 5–6, 879–901.

A. Lyberopoulos, Quasilinear scalar field equations with competing potentials, J. Differential Equations 251 (2011), no. 12, 3625–3657.

F. Mingwen and H. Yin, Existence and concentration of bound states of nonlinear Schrödinger equations with compactly supported and competing potentials, Pacific J. Math. 244 (2010), no. 2, 261–296

A. Pomponio, Schrödinger equation with critical Sobolev exponent, Differential Integral Equations 17 (2004), no. 5–6, 697–707.

A. Pomponio and S. Secchi, On a class of singularly perturbed elliptic equations in divergence form: existence and multiplicity results, J. Differential Equations 207 (2004), 229–266.

P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270–291.

S. Secchi and M. Squassina, On the location of concentration points for singularly perturbed elliptic equations, Adv. Differential Equations 9 (2004), no. 1–2, 221–239.

W. Wang, X. Yang and F. Zhao, Existence and concentration of ground states to a quasilinear problem with competing potentials, Nonlinear Anal. 102 (2014), 120–132.

X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, Siam J. Math. Anal. 28 (1997), no. 3, 633–655.

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

Topological Methods in Nonlinear Analysis

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-12-11

How to Cite

1.
BARAHONA, Willy, LAPA, Eugenio Cabanillas and FIGUEIREDO, Giovany M. Sign-changing solutions for a critical exponential problem with competing potentials. Topological Methods in Nonlinear Analysis. Online. 11 December 2025. pp. 1 - 21. [Accessed 14 December 2025]. DOI 10.12775/TMNA.2025.025.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop