Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Lower bounds for admissible values of the travelling wave speed in asymmetrically supported beam
  • Home
  • /
  • Lower bounds for admissible values of the travelling wave speed in asymmetrically supported beam
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Lower bounds for admissible values of the travelling wave speed in asymmetrically supported beam

Authors

  • Hana Formánková Levá https://orcid.org/0000-0003-2376-8154
  • Gabriela Holubová https://orcid.org/0000-0003-1127-3381
  • Petr Nečesal https://orcid.org/0000-0002-1176-7325

DOI:

https://doi.org/10.12775/TMNA.2025.023

Keywords

Beam equation, jumping nonlinearity, travelling wave, Mountain Pass Theorem, Fučík spectrum, Swift-Hohenberg operator, Padé approximation

Abstract

We study the admissible values of the wave speed $c$ for which the beam equation with jumping nonlinearity possesses a travelling wave solution. In contrast to previously studied problems modelling suspension bridges, the presence of the term with negative part of the solution in the equation results in restrictions of $c$. In this paper, we provide the maximal wave speed range for which the existence of the travelling wave solution can be proved using the Mountain Pass Theorem. We also introduce its close connection with related Dirichlet problems and their Fučík spectra. Moreover, we present several analytical approximations of the main existence result with assumptions that are easy to verify. Finally, we formulate a conjecture that the infimum of the admissible wave speed range can be described by the Fučík spectrum of a simple periodic problem.

References

G.A. Baker Jr. and P. Graves-Morris, Padé Approximants, Encyclopedia of Mathematics and its Applications, vol. 59, 2nd ed., Cambridge University Press, Cambridge, 1996, xiv+746 pp.

A.R. Champneys and P.J. McKenna, On solitary waves of a piecewise linear suspended beam model, Nonlinearity 10 (1997), no. 6, 1763.

Y. Chen, Traveling wave solutions to beam equation with fast-increasing nonlinear restoring forces, Appl. Math. J. Chinese Univ. 15 (2000), no. 2, 156–160.

Y. Chen and P.J. McKenna, Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations, J. Differential Equations 136 (1997), 325–355.

G. Dattoli, S. Lorenzutta and C. Cesarano, Finite sums and generalized forms of Bernoulli polynomials, Rend. Mat. Appl. (7) 19 (1999), no. 3, 385–391.

P. Drábek and J. Milota, Methods of Nonlinear Analysis, Springer Basel, 2013.

L. Greenberg, An oscillation method for fourth-order, selfadjoint, two-point boundary value problems with nonlinear eigenvalues, SIAM J. Math. Anal. 22 (1991), no. 4, 1021–1042.

G. Holubová and H. Levá, Travelling wave solutions of the beam equation with jumping nonlinearity, J. Math. Anal. Appl. 527 (2023), no. 2, 127466.

P. Karageorgis and J. Stalker, A lower bound for the amplitude of traveling waves of suspension bridges, Nonlinear Anal. 75 (2012), no. 13, 5212–5214.

P. Krejčı́, On solvability of equations of the 4th order with jumping nonlinearities, Čas. Pěstovánı́ Mat. 108 (1983), 29–39.

J. Swift and P.C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A 15 (1977), no. 1, 319–328.

Topological Methods in Nonlinear Analysis

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-12-11

How to Cite

1.
LEVÁ, Hana Formánková, HOLUBOVÁ, Gabriela and NEČESAL, Petr. Lower bounds for admissible values of the travelling wave speed in asymmetrically supported beam. Topological Methods in Nonlinear Analysis. Online. 11 December 2025. pp. 1 - 36. [Accessed 14 December 2025]. DOI 10.12775/TMNA.2025.023.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop