Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Global perturbative elliptic problems with critical growth in the fractional setting
  • Home
  • /
  • Global perturbative elliptic problems with critical growth in the fractional setting
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Global perturbative elliptic problems with critical growth in the fractional setting

Authors

  • Serena Dipierro
  • Edoardo Proietti Lippi
  • Enrico Valdinoci

DOI:

https://doi.org/10.12775/TMNA.2025.021

Keywords

Nonlinear analysis, nonlocal equations, critical problems

Abstract

Given $s$, $q\in(0,1)$, and a bounded and integrable function $h$ which is strictly positive in an open set, we show that there exist at least two nonnegative solutions $u$ of the critical problem $$(-\Delta)^s u=\varepsilon h(x)u^q+u^{2^*_s-1},$$% as long as $\varepsilon> 0$ is sufficiently small. Also, if $h$ is nonnegative, these solutions are strictly positive. The case $s=1$ was established in \cite{MR1801341}, which highlighted, in the classical case, the importance of combining perturbative techniques with variational methods: indeed, one of the two solutions branches off perturbatively in $\varepsilon$ from $u=0$, while the second solution is found by means of the Mountain Pass Theorem. The case $s\in(0,1/2]$ was already established, with different methods, in \cite{MR3617721} (actually, in \cite{MR3617721} it was erroneously believed that the method would have carried through all the fractional cases $s\in(0,1)$, so, in a sense, the results presented here correct and complete the ones in \cite{MR3617721}).

References

A. Ambrosetti, J. Garcia Azorero and I. Peral, Elliptic variational problems in RN with critical growth, Special issue in celebration of Jack K. Hale’s 70th birthday, Part 1 (Atlanta, GA/Lisbon, 1998), J. Differential Equations 168 (2000), no. 1, 10–32.

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381.

J.F. Bonder, N. Saintier and A. Silva, The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brézis–Nirenberg problem, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 6, paper no. 52, 25.

H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573.

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of Rn , Appunti. Sc. Norm. Super. Pisa (N.S.), vol. 15, 2017, viii+152 pp.

I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 5, 321–330 (in English, with French summary).

P.-L. Lions, Principe de concentration-compacité en calcul des variations, C.R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 7, 261–264 (in French, with English summary).

R. Servadei and E. Valdinoci, The Brézis–Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), no. 1, 67–102.

Topological Methods in Nonlinear Analysis

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-12-11

How to Cite

1.
DIPIERRO, Serena, LIPPI, Edoardo Proietti and VALDINOCI, Enrico. Global perturbative elliptic problems with critical growth in the fractional setting. Topological Methods in Nonlinear Analysis. Online. 11 December 2025. pp. 1 - 51. [Accessed 14 December 2025]. DOI 10.12775/TMNA.2025.021.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop