Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The kernel space of linear operator for a class of Grushin equation
  • Home
  • /
  • The kernel space of linear operator for a class of Grushin equation
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

The kernel space of linear operator for a class of Grushin equation

Authors

  • Yawei Wei https://orcid.org/0000-0002-9743-917X
  • Xiaodong Zhou https://orcid.org/0009-0000-7962-6521

DOI:

https://doi.org/10.12775/TMNA.2025.017

Keywords

Kernel space, linear operator, Grushin equation

Abstract

In this paper, we concern the kernel of linear operator for a class of Grushin equation. First, we study the kernel space of linear operator for a general Grushin equation. Then, we provide an exact expression for the kernel space of linear operator associated with a special Grushin equation. Finally, we prove the linear operator related to the singularly perturbed Grushin equation is invertible when restricted to the complement of its approximate kernel space.

References

C.O. Alves and A.R.F. de Holanda, A Berestycki–Lions type result for a class of degenerate elliptic problems involving the Grushin operator, Proc. Roy. Soc. Edinburgh 153 (2023), no. 4, 1244–1271.

W. Bauer, K. Furutani and C. Iwasaki, Fundamental solution of a higher step Grushin type operator, Adv. Math. 271 (2015), 188–234.

W. Bauer, Y. Wei and X. Zhou, A priori estimates and moving plane method for a class of Grushin equation, Arxiv: 2412.08039v1.

D.M. Cao, S.J. Peng and S.S. Yan, Singularity Perturbed Methods for Nonlinear Elliptic Problems, Cambridge University Press, 2021.

B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

M. Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire. 19 (2002), no. 3, 261–280.

Y. Guo, S. Peng and S. Yan, Local uniqueness and periodicity induced by concentration, Proc. London Math. Soc. 114 (2017), no. 6, 1005–1043.

L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 141–171.

Q.Q. Hua, C.H. Wang and J. Yang, Existence and local uniqueness of multi-peak solutions for the Chern–Simons–Schrödinger system, Arxiv: 2210.17427.2022.

M.K. Kwong, Uniqueness of positive solutions of ∆u − u + up = 0 in Rn , Arch. Rational Mech. Anal. 105 (1989), 243–266.

M. Liu, Z.W. Tang and C.H. Wang, Infinitely many solutions for a critical Grushin-type problem via local Pohozaev identities, Ann. Mat. Pura Appl. 199 (2020), 1737–1762.

P. Luo, S. Peng and C. Wang, Uniqueness of positive solutions with concentration for the Schrödinger–Newton problem, Calc. Var. Partial Differential Equations 59 (2020), no. 2, 60.

P.H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc. 272 (1982), no. 2, 753–769.

P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270–291.

N.M. Tri, Superlinear equations for degenerate elliptic operators, preprint ICTP, World Sci. Publ., Teaneck, N.J., 1995 , 1–17.

N.M. Tri, On the Grushin equation, Mat. Zametki 63 (1998), no. 1, 95–105.

X. Wang, On the concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (1993), 229–244.

Topological Methods in Nonlinear Analysis

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-12-11

How to Cite

1.
WEI, Yawei and ZHOU, Xiaodong. The kernel space of linear operator for a class of Grushin equation. Topological Methods in Nonlinear Analysis. Online. 11 December 2025. pp. 1 - 25. [Accessed 14 December 2025]. DOI 10.12775/TMNA.2025.017.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop