Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Parametric topological entropy of impulsive differential inclusions
  • Home
  • /
  • Parametric topological entropy of impulsive differential inclusions
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Parametric topological entropy of impulsive differential inclusions

Authors

  • Jan Andres https://orcid.org/0000-0001-5405-3827

DOI:

https://doi.org/10.12775/TMNA.2024.056

Keywords

Parametric topological entropy, impulsive differential inclusions, Ivanov-like inequality, Poincaré translation operators, asymptotic Nielsen number

Abstract

The main aim of this paper is to generalize and improve our earlier results in [J. Differential Equations \textbf{317} (2022), 365-386; \textbf{367} (2023), 783-803] and our joint result with Pavel Ludv\'{\i}k in [Internat. J. Bifur.\ Chaos Appl. Sci. Engrg. \textbf{33} (2023), no.\ 9, 2350113]. The theoretical part concerns the topological entropy of nonautonomous multivalued dynamical systems, studied by means of the asymptotic Nielsen theory. The practical part deals with the application of theoretical results via the associated Poincaré translation operators to impulsive differential inclusions on tori.

References

J. Andres, On the coexistence of irreducible orbits of coincidences for multivalued admissible maps on the circle via Nielsen theory, Topology Appl. 221 (2017), 596–609.

J. Andres, Parametric topological entropy and differential equations with time-dependent impulses, J. Differential Equations 317 (2022), 365–386.

J. Andres, Parametric topological entropy and differential equations with time-dependent impulses II: Multivalued case, J. Differential Equations 367 (2023), 783–803.

J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Kluwer, Dordrecht, 2003.

J. Andres and J. Jezierski, Ivanov’s theorem for admissible pairs applicable to impulsive differential equations and inclusions on tori, Mathematics 8 (2020), 1–14.

J. Andres and P. Ludvı́k, Topological entropy of composition and impulsive differential equations satisfying a uniqueness condition, Chaos Solitons Fractals 156 (2022), 111800.

J. Andres and P. Ludvı́k, Topological entropy and differential equations, Arch. Math. (Brno) 59 (2023), 3–10.

J. Andres and P. Ludvı́k, Parametric topological entropy for multivalued maps and differential inclusions with nonautonomous impulses, Int. J. Bifurc. Chaos 33 (2023), 2350113.

J.F. Alves, M. Carvalho and C.H. Vásquez, A variational principle for impulsive semiflows, J. Differential Equations 259 (2015), 4229–4252.

M.M. Anikushin and V. Reitmann, Development of concept of topological entropy for systems with multidimensional time, Differ. Equ. 52 (2016), 1655–1670.

F. Balibrea, On the origin and development of some notions of entropy, Topol. Algebra Appl. 3 (2015), 74–84.

P. Collins, Relative periodic point theory, Topology Appl. 115 (2001), 97–114.

Z. Galias, Positive topological entropy of Chua’s circuit: a computer assisted proof, Int. J. Bifurc. Chaos 7 (1997), 331–349.

A.-M. Hoock, Topological and invariance entropy for infinite-dimensional linear systems, J. Dynam. Control Syst. 20 (2014), 19–31.

N. Jaque and B.S. Martı́n, Topological entropy for discontinuous semiflows, J. Differential Equations 266 (2019), 3580–3600.

B. Jiang, Nielsen theory for periodic orbits and applications to dynamical systems, Nielsen Theory and Dynamical Systems, Contemp. Math. 152 (1993), 183–202.

C. Kawan, A.S. Matveev and A.Yu. Pogromsky, Remote state estimation problem: towards the data-rate limit along the avenue of the second Lyapunov method, Automatica 125 (2021), 109467.

J. Llibre, Brief survey on the topological entropy, Discrete Contin. Dyn. Syst. B 20 (2015), 3363–3374.

T. Matsuoka, The number and linking of periodic solutions of periodic systems, Invent. Math. 70 (1983), 319–340.

T. Matsuoka, The number and linking of periodic solutions of non-dissipative systems, J. Differential Equations 76 (1988), 190–201.

P. Oprocha and P. Wilczyński, Topological entropy for local processes, J. Differential Equations 249 (2010), 1929–1967.

A.Yu. Pogromsky and A.S. Matveev, Estimation of topological entropy via the discrete Lyapunov method, Nonlinearity 24 (2021), 1937–1959.

N. Tamblay, B.S. Martı́n and K. Vivas, Topological entropy and metric entropy for regular impulsive semiflows, J. Dynam. Differential Equations (2023), DOI: 10.1007/s10884022-10238-y.

L.H. Tien and L.D. Nhien, On the topological entropy of nonautonomous differential equations, J. Appl. Math. Phys. 7 (2019), 418–429.

A.N. Vetokhin, Topological entropy of a diagonalizable linear system of differential equations, Int. Workshop QUALITDE-2020 (December 19–21, 2020), (Tbilisi, Georgia), 2021, 200–202.

K. Wójcik, Relative Nielsen numbers, braids and periodic segments, Adv. Nonlinear Stud. 17 (2017), no. 3, 527–550.

P. Wong, Fixed points of pairs of nilmanifolds, Topology Appl. 62 (1995), 173–179.

Topological Methods in Nonlinear Analysis

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-12-11

How to Cite

1.
ANDRES, Jan. Parametric topological entropy of impulsive differential inclusions. Topological Methods in Nonlinear Analysis. Online. 11 December 2025. pp. 1 - 14. [Accessed 14 December 2025]. DOI 10.12775/TMNA.2024.056.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop