Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Ground states of biharmonic equations on lattice graphs
  • Home
  • /
  • Ground states of biharmonic equations on lattice graphs
  1. Home /
  2. Archives /
  3. Vol 66, No 1 (September 2025) /
  4. Articles

Ground states of biharmonic equations on lattice graphs

Authors

  • Chao Ji https://orcid.org/0000-0002-2657-0509
  • Vicenţiu D. Rădulescu https://orcid.org/0000-0003-4615-5537

DOI:

https://doi.org/10.12775/TMNA.2025.014

Keywords

Biharmonic equation, lattice graph, ground state, potential, variational methods

Abstract

In this paper, we are concerned with the existence of ground states to the following biharmonic equation on the lattice graph $$ \Delta^2 u-\Delta u+V(x)u=f(x, u), \quad x \in \mathbb{Z}^N. $$ The analysis is performed if the potential $V$ and the reaction $f$ are $T$-periodic in $x$, and the mapping $u \mapsto {f(x, u)}/{\vert u\vert}$ is non-decreasing on $\mathbb{R}\setminus \{0\}$. By using the variational methods, we establish the existence of ground states for the above problem. Moreover, if the potential $V$ has a bounded potential well and $f(x, u)=f(u)$ with $u \mapsto {f(u)}/{\vert u\vert}$ non-decreasing on $\mathbb{R}\setminus \{0\}$, the ground states are also obtained for the above equation. Finally, we extend the main results on the lattice graph $\mathbb{Z}^N$ to quasi-transitive graphs. In our analysis, the mappings $u \mapsto {f(x, u)}/{\vert u\vert}$ or $u \mapsto {f(u)}/{\vert u\vert}$ are only non-decreasing on $\mathbb{R}\setminus \{0\}$, which allows to consider larger classes of nonlinearities in the reaction.

References

F.O. de Paiva, W. Kryszewski and A. Szulkin, Generalized Nehari manifold and semilinear Schrödinger equation with weak monotonicity condition on the nonlinear term, Proc. Amer. Math. Soc. 145 (2021), 4783–4794.

A. Grigor’yan, Introduction to analysis on graphs, University Lecture Series, 71, vol. 8, American Mathematical Society, Providence, RI, 2018, pp. viii+150.

X.L. Han, M.Q. Shao and L. Zhao, Existence and convergence of solutions for nonlinear biharmonic equations on graphs, J. Differential Equations 268 (2020), 3936–3961.

B.B. Hua and R. Li, The existence of extremal functions for discrete Sobolev inequalities on lattice graphs, J. Differential Equations 305 (2021), 224–241.

B.B. Hua and W.D. Xu, Existence of ground state solutions to some nonlinear Schrödinger equations on lattice graphs, Calc. Var. Partial Differential Equations 62 (2023), no. 127, 17 pp.

A. Huang, Y. Lin and S.-T. Yau, Existence of solutions to mean field equations on graphs, Comm. Math. Phys. 377 (2020), 613–621.

J. Mederski, J. Schino and A. Szulkin, Multiple solutions to a nonlinear curl-curl problem in RN , Arch. Ration. Mech. Anal. 236 (2020), 253–288.

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math. 73 (2005), 259–287.

A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, Int. Press-Somerville, MA, 2010, pp. 597-632.

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal. 257 (2009), 3802–3822.

X.H. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv. Nonlinear Stud. 14 (2014), 361–373.

X.H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math. 58 (2015), 715–728.

W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, Cambridge, 2000.

X. X. Zhong and W. M. Zou, Ground state and multiple solutions via generalized Nehari manifold, Nonlinear Anal. 102 (2014), 251–263.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-10-01

How to Cite

1.
JI, Chao and RĂDULESCU, Vicenţiu D. Ground states of biharmonic equations on lattice graphs. Topological Methods in Nonlinear Analysis. Online. 1 October 2025. Vol. 66, no. 1, pp. 273 - 288. [Accessed 12 December 2025]. DOI 10.12775/TMNA.2025.014.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 66, No 1 (September 2025)

Section

Articles

License

Copyright (c) 2025 Chao Ji, Vicenţiu D. Rădulescu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop