Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Lyapunov exponents and the absolute continuity of intermediate foliations of special Anosov endomorphisms on T^d
  • Home
  • /
  • Lyapunov exponents and the absolute continuity of intermediate foliations of special Anosov endomorphisms on T^d
  1. Home /
  2. Archives /
  3. Vol 66, No 1 (September 2025) /
  4. Articles

Lyapunov exponents and the absolute continuity of intermediate foliations of special Anosov endomorphisms on T^d

Authors

  • José Santana C. Costa https://orcid.org/0000-0001-5452-0683
  • Fernando Micena https://orcid.org/0000-0002-5566-2752

DOI:

https://doi.org/10.12775/TMNA.2024.057

Keywords

Anosov endomorphism, Lyapunov exponents, conjugacy, absolutely continuous

Abstract

This work focuses on the study of Anosov endomorphisms of the torus $\mathbb{T}^d$ for $d \geq 3$. We aim to obtain metric and topological information about these endomorphisms by comparing their Lyapunov exponents with those of their linearizations. We provide a characterization of when the weak unstable foliation of a special Anosov endomorphism, which is close to a linear one, is absolutely continuous. Additionally, we demonstrate that in dimensions $d \geq 3$, it is possible to find a smooth special Anosov endomorphism that is conservative but not Lipschitz-conjugate to its linearization. This contrasts with the smooth rigidity observed in dimension two, as described in \cite{Mic22measurable}.

References

. An, S. Gan, R. Gu and Y. Shi, Rigidity of stable Lyapunov exponents and integrability for Anosov maps, Comm. Math. Phys. 402 (2023), 2831–2877.

A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergodic Theory Dynam Systems 23 (2003), 1655–1670.

M. Brin, On dynamical coherence, Ergodic Theory Dynam. Systems 23 (2003), no. 2, 395–401.

J. S. Costa and F. Micena, Pathological center foliation with dimension greater than one, Discrete Contin Dyn. Systems 39 (2019), no. 2, 1049–1070.

J. S. Costa and F. Micena, Some generic properties of partially hyperbolic endomorphisms, Nonlinearity 35 (2022), 5297–5310.

J. Franks, Anosov diffeomorphisms, Global Analysis, Proc. Sympos. Pure Math. 14 (1970), 61–93.

A. Gogolev, How typical are pathological foliations in partially hyperbolic dynamics: an example, Israel J. Math. 187 (2012), 493–507.

A. Hammerlindl, Leaf conjugacies on the torus, Ergodic Theory Dynam. Systems 33 (2013), no. 3, 896–933.

P.-D. Liu, Pesin’s entropy formula for endomorphisms, Nagoya Math. J. 150 (1998), 197–209.

P.-D. Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems, Lecture Notes in Mathematics, vol. 1606, Springer, 1995.

A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math.96 (1974, no. 3, 422–429.

R. Mañé and C. Pugh, Stability of endomorphisms, Dynamical Systems – Warwick 1974, Lecture Notes in Mathematics, vol. 468, Springer, Berlin, Heidelberg, 1975.

F. Micena, Rigidity and absolute continuity of foliations of Anosov endomorphisms, J. Dyn. Diff. Equat. (2024), 1–16, DOI: 10.1007/s10884-024-10350-1.

F. Micena and A. Tahzibi, On the unstable directions and Lyapunov exponents of Anosov endomorphisms, Fund. Math. 235 (2016), no. 235, 37–48.

S.M. Moosavi and K. Tajbakhsh, Classification of special Anosov endomorphisms of nil-manifolds, Acta Math. Sin. English Ser. 35 (2019), no. 12, 1871–1890.

Y. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity, European Mathematical Society, 2004.

F. Przytycki, Anosov endomorphisms, Studia Math. 58 (1976), 249–285.

M. Qian, J.-S. Xie and S. Zhu, Smooth Ergodic Theory for Endomorphisms, Lecture Notes in Mathematics, vol. 1978, Springer–Verlag, Berlin, Heidelberg, 2009.

M. Qian and S. Zhu, SRB measures and Pesin’s entropy formula for endomorphisms, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1453–1471.

K. Sakai, Anosov maps on closed topological manifolds, J. Math. Soc. Japan. 39 (1987), 505–519.

N. Sumi, Topological Anosov maps of infra-nil-manifolds, J. Math. Soc. Japan 48 (1996), no. 4, 607–648.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-09-10

How to Cite

1.
COSTA, José Santana C. and MICENA, Fernando. Lyapunov exponents and the absolute continuity of intermediate foliations of special Anosov endomorphisms on T^d. Topological Methods in Nonlinear Analysis. Online. 10 September 2025. Vol. 66, no. 1, pp. 1 - 20. [Accessed 12 December 2025]. DOI 10.12775/TMNA.2024.057.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 66, No 1 (September 2025)

Section

Articles

License

Copyright (c) 2025 José Santana C. Costa, Fernando Micena

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop