Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Higher topological type semiclassical states for fractional nonlinear elliptic equations
  • Home
  • /
  • Higher topological type semiclassical states for fractional nonlinear elliptic equations
  1. Home /
  2. Archives /
  3. Vol 65, No 2 (June 2025) /
  4. Articles

Higher topological type semiclassical states for fractional nonlinear elliptic equations

Authors

  • Shaowei Chen
  • Tianxiang Gou

DOI:

https://doi.org/10.12775/TMNA.2024.052

Keywords

Fractional nonlinear elliptic equations, semiclassical states, higher topological type solutions, Pohozaev identity, variational methods

Abstract

In this paper, we are concerned with semiclassical states to the following fractional nonlinear elliptic equation $$ \varepsilon^{2s}(-\Delta)^s u + V(x) u=\mathcal{N}(|u|)u \quad \mbox{in } \mathbb R^N, $$ where $0< s < 1$, $\varepsilon> 0$ is a small parameter, $N> 2s$, $V \in C^1\big(\mathbb R^N, \mathbb R^+\big)$ and $\mathcal{N}\in C\big(\mathbb R, \mathbb R^+\big)$. The nonlinearity has Sobolev subcritical, critical or supercritical growth, i.e.\ $\mathcal{N}(t)=t^{p-2}$, $\mathcal{N}(t)=\mu t^{p-2} +t^{2^*_s-2}$ or $\mathcal{N}(t)=t^{p-2} + \lambda t^{r-2}$ for $t \geq 0$, where $2< p< 2^*_s< r$ and $\mu, \lambda> 0$. The fractional Laplacian $(-\Delta)^s$ is characterized as $\mathcal{F}((-\Delta)^{s}u)(\xi)=|\xi|^{2s} \mathcal{F}(u)(\xi)$ for $\xi \in \mathbb R^N$, where $\mathcal{F}$ denotes the Fourier transform. We construct positive semiclassical states and an infinite sequence of sign-changing semiclassical states with higher energies clustering near the local minimum points of the potential $V$. The solutions are of higher topological type, which are obtained from a minimax characterization of higher dimensional symmetric linking structure via the symmetric mountain pass theorem. They correspond to critical points of the underlying energy functional at energy levels where compactness condition breaks down. The proofs are variational and mainly rely on penalization methods, $s$-harmonic extension theories and blow-up arguments along with local type Pohozaev identities.

References

N. Abatangelo, M.M. Fall and R.Y. Temgoua, A Hopf lemma for the regional fractional Laplacian, Ann. Mat. Pura Appl. (4) 202 (2023), no. 1, 95–113.

C. Alves and S.H.M. Soares, On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations, J. Math. Anal. Appl.296 (2004), 563–577.

O.C. Alves and O.H. Miyagaki, Existence and concentration of solutions for a class of fractional elliptic equation in RN via penalization method, Calc. Var. Partial Differential Equations 55 (2016), no. 3, Art. 47, 19 pp.

V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Ann. Mat. Pura Appl. (4) 196 (2017), no. 6, 2043–2062.

V. Ambrosio, Boundedness and decay of solutions for some fractional magnetic Schrödinger equations in RN , Milan J. Math. 86 (2018), no. 2, 125–136.

V. Ambrosio, Concentrating solutions for a class of nonlinear fractional Schrödinger equations in RN , Rev. Mat. Iberoam. 35 (2019), no. 5, 1367–1414.

V. Ambrosio and G.M. Figueiredo, Ground state solutions for a fractional Schrödinger equation with critical growth, Asymptot. Anal. 105 (2017), no. 3–4, 159–191.

T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer and 2-nodal solutions of semiclassical nonlinear Schrödinger equation, Math. Ann. 338 (2007), 147–185.

T. Bartsch and Z. Liu, On a superlinear elliptic p-Laplacian equation, J. Differential Equations 198 (2004), 149–175.

T. Bartsch, Z. Liu and T. Weth, Nodal solutions of a p-Laplacian equation, Proc. London Math. Soc. (3) 91 (2005), no. 1, 129–152.

C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 1, 39–71.

J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007), no. 2, 185–200.

J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal. 165 (2002), no. 4, 295–316.

J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations II, Calc. Var. Partial Differential Equations 18 (2003), no. 2, 207–219.

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I, Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 1, 23–53.

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7–9, 1245–1260.

J. Chabrowski and J. Yang, Existence theorems for elliptic equations involving supercritical Sobolev exponent, Adv. Differential Equations 2 (1997), no. 2, 231–256.

G. Chen, Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations, Nonlinearity 28 (2015), no. 4, 927–949.

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2359–2376.

S. Chen, J. Liu and Z.-Q. Wang, Localized nodal solutions for a critical nonlinear Schrödinger equation, J. Funct. Anal. 277 (2019), no. 2, 594–640.

S. Chen and Z.-Q. Wang, Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 56 (2017), no. 1, Art. 1, 26 pp.

W. Chen and C. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math. 335 (2018), 735–758.

S. Cingolani and M. Gallo, On the fractional NLS equation and the effects of the potential well’s topology, Adv. Nonlinear Stud. 21 (2021), no. 1, 1–40.

S. Cingolani and K. Tanaka, A deformation theory in augmented spaces and concentration results for NLS equations around local maxima, Trends Math., Birkhäuser/Springer, Cham, 2023, pp. 309–331.

S. Cingolani and K. Tanaka, Semi-classical analysis around local maxima and saddle points for degenerate nonlinear Choquard equations, J. Geom. Anal. 33 (2023), no. 10, paper no. 316, 55 pp.

J.N. Correia and G.M. Figueiredo, Existence of positive solution of the equation (−∆)s u + a(x)u = |u|2s −2 u, Calc. Var. Partial Differential Equations 58 (2019), no. 2, paper no. 63, 39 pp.

T. d’Aprile and A. Pistoia, On the number of sign-changing solutions of a semiclassical nonlinear Schrödinger equation, Adv. Differential Equations 12 (2007), 737–758.

T. D’Aprile and A. Pistoia, Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation, Ann. Inst. Henri Poincaré Anal. Non Lináire 26 (2009), 1423–1451.

P. d’ Avenia, A. Pomponio and D. Ruiz, Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal. 262 (2012), no. 10, 4600–4633.

P. d’ Avenia, A. Pomponio and D. Ruiz, Corrigendum to: Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods [J. Funct. Anal. 262 (2012), 4600–4633], J. Funct. Anal. 284 (2023), no. 7, paper no. 109833, 3 pp.

J. Davila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations 256 (2014), 858–892.

M. del Pino and P.L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), no. 2, 127–149.

M. del Pino and P.L. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal. 149 (1997), no. 1, 245–265.

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of Rn , Appunti. Scuola Normale Superiore di Pisa, 2017.

L.M. Del Pezzo and A. Quaas, A Hopf ’s lemma and a strong minimum principle for the fractional p-Laplacian, J. Differential Equations 263 (2017), no. 1, 765–778.

M.M. Fall, F. Mahmoudi and E.Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity 28 (2015), 1937–1961.

P. Felmer, A. Quass and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237–1262.

G.M. Figueiredo and G. Siciliano, A multiplicity result via Lusternick–Schnirelmann category and Morse theory for a fractional Schrödinger equation in RN , NoDEA Nonlinear Differential Equations Appl. 23 (2016), no.] 2, Art. 12, 22 pp.

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), no. 3, 397–408.

R.L. Frank, E.H. Lieb and R. Seiringer, Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc. 21 (2008), 925–950.

M. Gallo, Multiplicity and concentration results for local and fractional NLS equations with critical growth, Adv. Differential Equations 26 (2021), no. 9–10, 397–424.

Y. He, Singularly perturbed fractional Schrödinger equations with critical growth, Adv. Nonlinear Stud. 18 (2018), no. 3, 587–611.

X. He and W. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 91, 39 pp.

T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I, blow up analysis and compactness of solutions, J. Eur. Math. Soc. 16 (2014), 1111–1171.

N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62 (2000), 31–35.

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), 298–305.

N. Laskin, Fractional Schrödinger equation, Phys. Rev. 66 (2002), no. 056108.

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 (2014), 795–826.

Z. Liu, Z.-Q. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system, Ann. Math. Pura Appl. 195 (2016), no. 4, 775–794.

G. Molica Bisci, V. Radulescu and R. Raffaella, Variational Methods for Nonlocal Fractional problems, Encyclopedia of Mathematics and its Applications, vol. 162, Cambridge University Press, Cambridge, 2016.

Y.-G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V )a , Comm. Partial Differential Equations 13.12 (1988), 1499–1519.

Y.-G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys. 131 (1990), no. 2, 223–253.

H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270–291.

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986.

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math.Pures Appl. 101 (2014), 275–302.

sc T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskiı̆ Operators, and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, vol. 3, 1996.

X. Shang, J. Zhang and Y. Yang, On fractional Schrödinger equation in RN with critical growth, J. Math. Phys. 54 (2013), no. 12, 121502, 20 pp.

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math. 60 (2007), no. 1, 67–112.

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst. 31 (2011), no. 3, 975–983.

C. Tintarev, Concentration analysis and cocompactness, Concentration Analysis and Applications to PDE, Trends Math., Birkhäuser/Springer, Basel, 2013, pp. 117–141.

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (1993), no. 2, 229–244.

Z.-Q. Wang and X. Zhang, An infinite sequence of localized semiclassical bound states for nonlinear Dirac equations, Calc. Var. Partial Differential Equations 57 (2018), 56.

J. Zhao, X. Liu and J. Liu, p-Laplacian equations in RN with finite potential via truncation method, the critical case, J. Math. Anal. Appl. 455 (2017), 58–88.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-06-14

How to Cite

1.
CHEN, Shaowei and GOU, Tianxiang. Higher topological type semiclassical states for fractional nonlinear elliptic equations. Topological Methods in Nonlinear Analysis. Online. 14 June 2025. Vol. 65, no. 2, pp. 687 - 763. [Accessed 13 December 2025]. DOI 10.12775/TMNA.2024.052.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 2 (June 2025)

Section

Articles

License

Copyright (c) 2025 Shaowei Chen, Tianxiang Gou

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop